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What are proofs?

● A proof tries to assert the correctness(or incorrectness) of a given statement

● A short sequence of logical statements which are either axiomatic or 
consequences of previous statements in the sequence, which assert the 
truthiness of the given statement.

● If there is a correct proof, then the given statement is true

● If there is no proof, then the given statement must be false
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What are interactive proofs?

● We can model the concept of a proof as an interaction between a “prover” 
and a “verifier”.

● The goal of a verifier is to assert the correctness of a statement. 

● A verifier interrogates the prover with questions related to a statement, prover  
answers with intent to convince the verifier of the correctness of the statement

How much interaction?

How good is the prover?
??
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Interactive Proofs and Complexity Theory: Hiding behind Ǝ

● Can we capture NP using an interactive proof? Yes!

● A poly-time machine asking a “machine” to provide a certificate.

Verifier Prover

● Here, the verifier V, is a polynomial time Turing machine which takes strings 
of a language L and outputs 1 if the string is in L or 0 otherwise. 

● The Prover P, is a function that maps strings to a certificate or “Sorry, not in 
the language”.
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Interactive Proofs and Complexity Theory: Trusting Strangers

● The verifier still has to verify the certificate!

● Provers are always trying to prove correctness, even if a statement is not 
correct.

● Even if the prover diligently says that there is no proof, the verifier cannot be 
sure unless the verifier knows that the prover is all powerful.
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Definition: Let f, g : {0, 1}* → {0, 1}* be functions. A k-round interaction of f and g on input x  {0, 1}∈ *, 
denoted by <f, g>(x) is the sequence of the following strings a1, . . . , ak  {0, 1}∈ * defined as follows:

a1 = f (x)

a2 = g(x, a1)

. . .

a2i+1 = f (x, a1, . . . , a2i)

a2i+2 = g(x, a1, . . . , a2i+1)

The output of f at the end of the interaction, outf<f, g>(x), is defined to be 

f(x, a1, . . . , ak) 

Transcript
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Interactive Proof systems

Definition: Deterministic proof systems

For k ≥ 1, We say that a language L has a k-round deterministic interactive proof 
system if there’s a deterministic poly-time TM V that on input x, a1, . . . , ai runs in 
time polynomial in |x|, satisfying:

x  L  P : {0, 1}∈ ⇒ ∃ * → {0, 1}* outV <V, P>(x) = 1 (Completeness)

x  L  P : {0, 1}∉ ⇒ ∀ * → {0, 1}* outV <V, P>(x) = 0 (Soundness)



Interactive Proof systems

Image Credits: ProgVal, CC0, via Wikimedia Commons
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Interactive Proof systems: dIP

● Obs: Since the verifier is poly-time, the transcript must be poly-size. Which 
means the number of interactions can be at most poly-size.

● dIP is the set of all languages with poly(n)-round deterministic interactive 
proof system.

● Can’t we define a class of constant round deterministic interactive proof 
systems?
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Where is dIP?

● Claim: NP ⊆dIP

Proof: One round protocol for 3SAT, 
where a prover returns a satisfying 
assignment for the input if it exists.
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Where is dIP?

● Claim: dIP ⊆NP

Proof: Consider a dIP system with P,V. Consider a poly-time verifier M, the entire 
transcript of a deterministic interaction is a certificate. 

M verifies that the output of each round from the verifier matches that in the 
transcript by simulating V. 

It does not need to simulate P, as if a certificate exists, the string must be in the 
language and a prover must exist which outputs matching values in the transcript.

● Lemma: dIP = NP



Where is dIP? EXPTIME

NEXPTIME

PSPACE

P#P

PH

NP=dIP co-NP

NC

P
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IP: Probabilistic Verifier

Definition [GMR ‘89]: Probabilistic Verifiers and IP

For k ≥ 1, we say that a language L has in IPTIME[k] if there’s a probabilistic poly-time 
TM V that has a k-round interaction with P: {0,1}* →{0,1}*  that on input x

x  L  P Pr∈ ⇒ ∃ r[outV <V, P>(x) = 1] ≥ 2/3 (Completeness)

x  L  P Pr∉ ⇒ ∀ r[outV <V, P>(x) = 1] ≤ 1/3 (Soundness)

The probabilities over the random bits r of V.

The class IP is defined as IP = Uc>0 IPTIME[nc]
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P:BPP::NP:IP

● Lemma: We can boost the completeness and soundness probability by 

1 - 2-n^c and 2-n^c respectively for some constant c.

Proof:  Similar to boosting a BPP machine. Polynomially(nc) many 
independent repetitions of protocol. 

Additionally, we can also do all repetitions in parallel by asking multiple 
questions in each round, thereby decreasing the number of rounds.
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PSPACE

P#P

PH

NP co-NP

P

IP?
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ZPP

co-RP

* somewhere in Σ2  П⋂ 2
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How Big is IP?

● Graph isomorphism known to be in NP, hence in IP. Unclear whether non-
isomorphism is in NP, but an interactive proof exists. 

● Graph non-isomorphism is defined as the following language

NONISO = {(G1,G2) | G1 is not isomorphic to G2}

● Lemma: NONISO IP [GMW ‘91]∈
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Private Coin Protocol

1. V randomly picks a graph between G1 and G2, say Gi. Randomly permute 
vertices of Gi to make H. Send H to P and asks if H is isomorphic to G1 or G2

2. Prover tries to figure out whether H is isomorphic to G1 or G2, sends j {1,2} to V∈

3. V accepts if j==i.
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NONISO in IP: Private Coin Protocol

● If G1 and G2 are not isomorphic, then the prover should be able to compare 
every permutation of H with G1 and G2 to be able to answer correctly. 

● The probability of acceptance when the string is in the language is 1.
(Perfect Completeness)

● If they are not isomorphic, the best the prover can do is to guess at 
random. So the probability of acceptance when it isn’t in the language is ½. 
We can decrease this be multiple repetitions.



What’s in IP?

● Clearly, NP is also in IP.

As dIP is in IP

● So is BPP

The verifier is a BPP machine that ignores the prover

● NONISO in IP

IP

NP

P

NC

BPP*

RP

ZPP

co-RP

* somewhere in Σ2  П⋂ 2

{NONISO}
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Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier(V) f

Obs 2: The prover must be all powerful

Obs 3: The verifier should be “efficient”

Obs 4: The transcript must be “short”

Obs 5: Both V and P have access to the input x

Probabilistic poly-time.

Probabilistic?

Who starts?

What about random bits of V?
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AM and MA: Public and Private coins

Constant round interactive proofs with public coins: AM and MA.

We have already seen the set lower bound protocol, which was used to show 
that graph non-isomorphism is in BP.NP

● Theorem: BP.NP = AM Σ⊆ 3

● Theorem [Babai ‘88]: AM[k] = AM[2] for constant k

● Theorem [GS ‘86]: AM[k]  IP[k] AM[k+2] ⊆ ⊆ for polynomial k.

Verifier starts

Prover starts



What’s in IP?
IP

{NONISO}

AM*
* Somewhere in Σ3

MA
NP

P

NC
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Theorem: IP PSPACE⊆



Theorem: IP PSPACE⊆

Proof Idea: Since we restrict certificates to be poly-size, it’s easy to see that one 
can use a PSPACE machine to run through all possible transcripts to simulate a 
prover and calculate exactly the acceptance probability.



Theorem: IP PSPACE⊆

Proof Idea: Since we restrict certificates to be poly-size, it’s easy to see that one 
can use a PSPACE machine to run through all possible transcripts to simulate a 
prover and calculate exactly the acceptance probability.

Proof: Consider a language A in IP with a verifier V. Let the transcript be exactly of 
size p = poly(n) for all inputs x of size n. We will construct a PSPACE machine M 
which decides A.
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Theorem: IP PSPACE⊆
Definition: For any string x, we define 

Pr[ V accepts x ] = maxP Pr[ <V,P> accepts x ]

If x is in A, then it is at least ⅔ and at most ⅓ if it is not.

Definition: Mj = m1,...,mj is the partial transcript upto length j. mi represents 
the ith message.

Definition: <V,P>(x,r,Mj) = accept, for a random string r of length p,  if there exists 
mj+1,..mp such that

1. For j ≤ i < p and i is even V(x,r,Mi) = mi+1

2. For j ≤ i < p and i is odd P(x,Mi) = mi+1

3. mp is accept
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Theorem: IP PSPACE⊆

Obs: Using previous definitions,

Pr[ <V,P> accepts x starting at Mj ] = Pr[ <V,P>(x,r,Mj) = accept ]    (1)

Pr[ V accepts x starting at Mj ] = maxP Pr[ <V,P> accepts x starting at Mj ]   (2)

The goal is now to compute the probability of V accepting x starting from M0. 
If this is greater than ⅔ then x must be in A, if it less than ⅓ then it must not 
be in A. We do this recursively.
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NM_ j = 0                                 if j = p and mp = reject

        = 1                                 if j = p and mp = accept

        = maxm_{j+1} NM_{j+1}         odd j < p

        = wt-avgm_{j+1} NM_{j+1}    even j<p

wt-avgm_{j+1} NM_{j+1} = ∑m_{j+1} ( (Pr[V(w,r,Mj)=mj+1])  ・ NM_{j+1} )
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Claim 1: NM_j = Pr[ V accepts x starting at Mj ]

Claim 2: NM_j can be calculated in PSPACE

We need to prove the following 2 claims, with that the proof is complete.
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Claim 1: NM_j = Pr[ V accepts x starting at Mj ]

Proof: We prove by top down induction.

Base case: j = p. The last message must be accept or reject. Hence, the 
probability of acceptance when the last message is reject is 0 and when the last 
message is accept, it is 1. This is exactly how NM_j is defined.

Inductive step: Assume the claim to be true for some j+1 ≤ p. We have 2 cases, 
one when j is even and when j is odd. 

IH: NM_{j+1} = Pr[ V accepts x starting at Mj+1 ]
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Claim 1: NM_j = Pr[ V accepts x starting at Mj ]

When j is even, the message mj+1 is from V to P. From the definition of NM_j

NM_j = ∑m_{j+1} ( (Pr[V(w,r,Mj) = mj+1])  ・ NM_{j+1} )

From the Induction hypothesis, we can conclude

NM_j = ∑m_{j+1} ( (Pr[V(w,r,Mj) = mj+1])  ・ Pr[ V accepts x starting at Mj+1 ])

This is the total probability partitioned over all possible messages mj+1. Hence,

NM_j = Pr[ V accepts x starting at Mj ]



Theorem: IP PSPACE⊆

When j is odd, the message mj+1 is from P to V. From the definition of NM_j

NM_j = maxm_{j+1} NM_{j+1}

NM_j = maxm_{j+1} Pr[ V accepts x starting at Mj+1 ]

       = maxm_{j+1} maxP’ Pr[ <V,P’>(x,r,Mj+1) = accept ]

1… ≤ maxP Pr[ <V,P> accepts x starting at Mj ],  P can send the maximizing m*
j+1

2… ≥ maxP Pr[ <V,P> accepts x starting at Mj ], P cannot be better than P’

Therefore,

NM_j = Pr[ V accepts x starting at Mj ]



Theorem: IP PSPACE⊆

Claim 2: NM_j can be calculated in PSPACE

From the above proof, it also clear that these values can be calculated in PSPACE 
recursively. The depth of the recursion would be p. M calculates NM_j for every j 
and Mj. 

☐



PSPACEWhere is IP?
IP

{NONISO}

AM*
* Somewhere in Σ3

MA
NP

P

NC

BPP*

RP

ZPP

co-RP

* somewhere in Σ2  П⋂ 2
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co-NP IP?⊆

● One way to show PH IP, is to show a PH-complete problem is in IP⊆

Doesn’t exit(as far as we know)

● Or, show every Σi-SAT is in IP

● We can prove P#P IP if #3SAT is in IP, would automatically imply PH is in IP ⊆
by Toda’s theorem

● Proven by [LFKN ‘92]



#3SAT Prerequisites

● Definition: #3SAT

#3SAT = {(ɸ,k)| where ɸ is a 3CNF with exactly k satisfying assignments}

#ɸ is the number of satisfying assignments of 3CNF ɸ

Say ɸ(x1,...xn), then

#ɸ = Σb_1 {0,1}∈ Σb_2 {0,1}∈ ...Σb_n {0,1}  ∈ ɸ(b1,...bn)

ɸ(b1,...bn) = 1 if b1…bn is a satisfying assignment, 0 otherwise

We define #ɸ(a1,...ai-1) as

#ɸ(a1,...ai-1) = Σb_i∈{0,1}...Σb_n∈{0,1}ɸ(a1,...,ai-1,bi,...,bn)  



#3SAT Prerequisites

Observation*: #ɸ(a1,...ai-1) = #ɸ(a1,...ai-1,0) + #ɸ(a1,...ai-1,1)

#ɸ(a1,...ai-1) = Σb_i∈{0,1}...Σb_n∈{0,1}ɸ(a1,...,ai-1,bi,...,bn)  

 

= Σb_{i+1} {0,1}∈ ...Σb_n {0,1}∈ ɸ(a1,...,ai-1,0,...,bn) + Σb_{i+1} {0,1}∈ ...Σb_n {0,1}∈ ɸ(a1,...,ai-1,1,...,bn)       

 

= #ɸ(a1,...ai-1,0) + #ɸ(a1,...ai-1,1)
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#3SAT IP? [Attempt 1]⊆
Say the input is (ɸ,K). The verifier has to check whether ɸ indeed has K satisfying 
assignments. Try to verify observation*

1. Step 0: Verifier sends ɸ to the Prover and asks for number of satisfying assignments 
to ɸ

2. Step 1: Prover sends K
3. Step 2: Verifier sets x1 to 0 in ɸ (ɸ1) and x1 to 1(ɸ2) and evaluates ɸ1 and ɸ2 and asks 

the verifier for #ɸ1 and #ɸ2

4. Step 3: Prover sends k1 and k2

5. Step 4: Verifier verifies that K = k1 + k2

6. Repeat by setting each variable xi to 0 and 1 and verifying
7. Step ??: Once all variables have been set, Verifier asks the prover the number of 

satisfying assignments and also verifies the answer by itself.
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#3SAT IP? [Attempt 1]⊆

Problem: Requires exponential rounds of interaction to enumerate over all 
assignments

Issues: We are not using the probabilistic nature of the verifier

Idea: Randomly choose a path in the tree
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#3SAT IP? [Attempt 2]⊆

● Clearly, we may accidentally accept the wrong value. 

● What if k1 was not actually the number of satisfying assignments of ɸ1 and k2 is correct 
and we decide to go down k2. How lucky can the prover get?

● The probability that the prover actually gets caught is 2-n. We need to catch every wrong 
branch at every step. 

● So, we always accept when the number of satisfying assignments are correct, but we 
will also accept when it is incorrect with probability 1 - 2-n.
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Boolean is F2

Every boolean formula can be expressed as a polynomial over elements of F2

We use the following trick:

a Λ b  ab☰

a V b  1 - (1-a)(1-b)  a + b - ab☰ ☰

ㄱ a  (1-a)☰

       True  1☰

False  0☰

Example: 

(x1V x3V ㄱ x4)  (x☰ 1+ x3 - x1x3) + (1-x4) - (x1+ x3 - x1x3)(1-x4)
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Boolean is F2

● We are now able to express a boolean formula ɸ as a polynomial Pɸ

● The degree of each clause will be at most 3, as ɸ is a 3CNF, and the net 
degree will be at most 3m where there are m clauses in ɸ.

● The size of the polynomial will also be bound polynomial in the size of ɸ as we 
don’t need to expand the terms



Boolean is F2

We can restate our equations as follows, where Xis are now formal variables

#ɸ = Σb_1 {0,1}∈ Σb_2 {0,1}∈ ...Σb_n {0,1} ∈ Pɸ(b1,...bn)

#ɸ(X1,...Xi-1) = Σb_i {0,1}∈ ...Σb_n {0,1}∈ Pɸ(X1,...,Xi-1,bi,...,bn)

#ɸ(X1,...Xi) = #ɸ(X1,...Xi-1,0) + #ɸ(X1,...Xi-1,1)
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Theorem[LFKN ‘92]: #3SAT∈IP

Key Idea: Arithmetization

None of the previous definitions are impacted if we moved from F2 to Fp as 
long as p is a suitably large prime

Once we do that, we can plug in any element in Fp into our polynomial
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● How large should p be?

The number of satisfying assignments can be at most 2n, therefore, we can chose 
a prime between 2n and 22n. 

We ask the prover to provide this prime at the start of the protocol and the verifier 
can verify primalty in polynomial time.
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Sumcheck protocol

A generic protocol to verify equations of the form

K = Σb_1 {0,1}∈ ...Σb_n {0,1} ∈ g(X1,...Xn)                        … eq(1)

Where g is any polynomial of small size and which can be evaluated in polynomial 
time.

Obs: Pɸ is a degree 3m polynomial it’s size is of the order of the size of ɸ. It can 
also be easily evaluated in the same way we evaluate formulas on 
assignments. So we can use the sumcheck protocol.
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Sumcheck protocol

Obs: h(X1) = Σb_2 {0,1}∈ ...Σb_n {0,1} ∈ g(X1,b2,...bn)

Is a univariate polynomial of degree at most m in the variable X1.

If eq(1) is true, then h(0) + h(1) = K

The input to the protocol would be a polynomial g(X1,...,Xn) and K.

Obs: g can be evaluated in polynomial time, however h cannot even be computed 
in polynomial time



Sumcheck protocol
Input: g(X1,...Xn), K

V: if n = 1, verify K = g(0) + g(1)

V: It asks the prover to send a polynomial h, as defined previously, a polynomial in X1

P: sends a polynomial s

V:  verify that s(0) + s(1) = K. Selects a random element from Fp, say a. It calculates 
s(a). 

Recursively solve with the input as 

g(a,X2,...Xn) and s(a).
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g(X1,..Xn)

s1(X1)

g(a1,X2,...Xn)

s2(X2)

g(a1,a2,...Xn)

…

sn(Xn)

g(a1,a2,...an) == sn(an)

s1(0)+s1(1) == K

s2(0)+s2(1) == s1(a1)

sn(0)+sn(1) == sn-1(an-1)
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Analysis of protocol

● Sending univariate polynomials is sending d numbers where d is the degree 
of the polynomial.

● If eq(1) is true, then the prover sends the correct polynomial h in the first 
round, ie, s1 = h. So we will never reject a correct string. (Perfect 
completeness)

● How lucky does the prover need to be for the verifier to accept an incorrect 
string?
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Analysis of Error bound

What is the probability over a that s(a)=h(a) for 2 univariate polynomials s and h?

From the Schwartz-Zippel lemma, we have a bound on this number

Pra[s(a)-h(a)=0] ≤ d/p

Where d is the degree of the difference polynomial and p is the size of the field. 

Thus, the probability that at any step, the prover is caught is at least 1-d/p. 
Therefore, applying the union bound, the probability that the prover is never 
caught is (d*n/p) 

Therefore the error probability is less than 3n2/2n which is less than ⅓ for n>9



PSPACE

P#P

PH

What’s in IP?

BPP

RP

ZPP

co-RP
P

NC

AM

MA
co-NP

IP

NP



TQBF IP?⊆

Definition: TQBF

TQBF = { Ψ = Q1x1…Qnxn ɸ(x1,...xn) | Ψ = True, Qi in { , }, boolean formula ɸ}∃ ∀

Ψ = x∀ 1, x∃ 2, x∀ 3… x∃ n ɸ(x1,...xn) TQBF iff∈

Πb_1 {0,1}∈ Σb_2 {0,1}∈ Πb_3 {0,1}∈ ...Σb_n {0,1} ∈ Pɸ(b1,...bn) = 1

Where Pɸ is the polynomial as defined before over F2
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Sumcheck Protocol?

● How do we modify the sumcheck protocol for TQBF?

Obs 1: Add over ∃

As for 3SAT, when we need a univariate polynomial over a variable quantified by , ∃
we must check the additivity, i.e, s(0)+s(1) = K

Obs 2: Multiply over ∀

When we have a univariate polynomial over a variable quantified by , we must ∀
check multiplicity, i.e, s(0) ∙ s(1) = K



Sumcheck Protocol?

● Unlike adding polynomials, multiplying polynomials increase the degree

● If we define h(X1) as defined previously:

h(X1) = Σb_2 {0,1}∈ Πb_3={0,1}...Σb_n {0,1} ∈ Pɸ(X1,...bn)

This can have degree at most 2n. Which cannot be sent from the prover to the 
verifier.
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Linearization

Obs: 

xk = x in F2 for any k > 0

Any polynomial p(X1,...Xn) can be converted to a multilinear polynomial q(X1,...Xn) 
where 

1. The degree of any variable in any term of q is at most 1

2. p(a1,...an) = q(a1,...an) for any a1…an {0,1}∈



Linearization

Definition: Linearization operator L

Li(p) = Xi ∙ p(X1,...,Xi-1,1,Xi+1,...Xn) + (1-Xi) ∙ p(X1,...,Xi-1,0,Xi+1,...Xn)

Defines a new polynomial such that

1. Degree of Xi in Li(p) is at most 1
2. Li(p) gives the same values as p for all binary inputs

Obs: q = L1(L2(...Ln(p)...)))



Linearization

Definition:  operator for polynomials∀

∀i p(X1,...Xn) = p(X1,...,Xi-1,0,Xi+1,...Xn) ∙ p(X1,...,Xi-1,1,Xi+1,...Xn)

Definition:  operator for polynomials∃

∃i p(X1,...Xn) = p(X1,...,Xi-1,0,Xi+1,...Xn) + p(X1,...,Xi-1,1,Xi+1,...Xn)
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Linearization
Original polynomial:

Πb_1 {0,1}∈ Σb_2 {0,1}∈ Πb_3 {0,1}∈ ...Σb_n {0,1} ∈ Pɸ(b1,...bn) = 1

Can be equivalently rewritten as

∀1∃2∀3…∃nPɸ(X1,...Xn) = 1

Since we only care about using {0,1} to Pɸ(X1,...Xn), we do not lose semantics by 
adding linearization operators in between, 

∀1L1 ∃2L1L2 ∀3…∃nL1L2…LnPɸ(X1,...Xn) = 1

The size of this expression is increased due to the addition of the linearization 
operator. The size will then be O(n+1+2+...+n+|Pɸ|), which is still poly-size
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Modified Sumcheck protocol

Consider a polynomial g(X1,...Xn), we need to check whether

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn) = 1

Input: R1R2…Rtg(X1,...Xn) where R represents one of the 3 operators, t is poly(n) 
and a claim C.

TQBF: g would be Pɸ, t would be o(n3), and C would be 1



Modified Sumcheck protocol

V: provide a polynomial equal to R2…Rtg(X1,...Xn)

P: returns a polynomial s(X1)

V: 1) If R1 = ∃1 verify that s(0) + s(1) = C 

    2) If R1 = ∀1 verify that s(0) ∙ s(1) = C

    3) If R1 = L1 and verify that a ∙ s(1) + (1-a) ∙ s(0) = s(a)

If all checks pass, pick a random element a, recursively prove that the polynomial 
R2…Rtg(a,...Xn) = s(a)
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s3(X2)

…



Modified Sumcheck protocol

∀1L1 ∃2L1L2 ∀3…∃nL1L2…Lng(X1,...Xn)

s1(X1)

L1 ∃2L1L2 ∀3…∃nL1L2…Lng(a1,X2,...Xn)

s2(X1)

∃2L1L2 ∀3…∃nL1L2…Lng(a1,a2,...Xn)

st(Xn)

g(a1,a2,...an) == st(an)

s1(0) ∙ s1(1) == C

(1 - a1) ∙ s2(0) + a1 ∙ s2(1) == s2(a1)

(1 - an-1) ∙ st(0) + an-1 ∙ st(1) == st(an-1)

L1L2 ∀3…∃nL1L2…Lng(a1,a2,a3,...Xn)

s3(0) + s3(1) == s2(a2)
s3(X2)

…
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MIP

● We don’t need to restrict ourselves to one prover. If we could interact with multiple 
provers, we would get the class MIP[BGK ‘88]

● Note: Provers cannot talk to each other, they communicate only to the verifier on 
the transcript which everyone can see.

● What power does each prover give? More Provers => More Power? 

No.

● Theorem[BFL ‘91]: MIP = MIP[2] = NEXPTIME
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QIP, MIP*

● Replacing the BPP verifier with a BQP verifier in IP gives QIP[Wat ‘99]
● Theorem [JJUW ‘09]: QIP = PSPACE 

● What if we allowed provers to converse in MIP? Suppose, through arbitrary length 
quantum entangled qubits. We would get the class MIP*[CHT ‘04]

● Theorem[JNVWY ‘20]: MIP* = RE

● We would be able to solve undecidable problems like the halting problem



IP = PSPACE Timeline

1985: AM, MA defined by Babai 

1986: Goldwasser and Sipser show public coin private coin equivalence

1988: AM=AM[2] by BM, MIP is defined by BGKW

1989: IP is defined by GMR

1991: ZKP(NONISO in IP) by GMW, MIP=NEXP by BFL

1992: #3SAT in IP by LFKN, IP=PSPACE by Shamir, Simpler proof by 
Shen
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IP = PSPACE = QIP
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BPP

RP

ZPP

co-RP
P

AM

MA
co-NP

EXPTIME

NEXPTIME = MIP

NP

MIP* = RE

● Randomness+Interaction is the key, alone they 
are “weak”

● Supreme power is useless unless succinct

● Mapping to polynomials is a very powerful 
technique
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