Interactive Proofs

Or how I stopped worrying and learned to ask questions

Dhruva Kashyap, November 2022
Department of Computer Science and Automation, IISc, Bengaluru

What are proofs?

What are proofs?

- A proof tries to assert the correctness(or incorrectness) of a given statement

What are proofs?

- A proof tries to assert the correctness(or incorrectness) of a given statement
- A short sequence of logical statements which are either axiomatic or consequences of previous statements in the sequence, which assert the truthiness of the given statement.

What are proofs?

- A proof tries to assert the correctness(or incorrectness) of a given statement
- A short sequence of logical statements which are either axiomatic or consequences of previous statements in the sequence, which assert the truthiness of the given statement.
- If there is a correct proof, then the given statement is true

What are proofs?

- A proof tries to assert the correctness(or incorrectness) of a given statement
- A short sequence of logical statements which are either axiomatic or consequences of previous statements in the sequence, which assert the truthiness of the given statement.
- If there is a correct proof, then the given statement is true
- If there is no proof, then the given statement must be false

What are interactive proofs?

What are interactive proofs?

- We can model the concept of a proof as an interaction between a "prover" and a "verifier".

What are interactive proofs?

- We can model the concept of a proof as an interaction between a "prover" and a "verifier".
- The goal of a verifier is to assert the correctness of a statement.

What are interactive proofs?

- We can model the concept of a proof as an interaction between a "prover" and a "verifier".
- The goal of a verifier is to assert the correctness of a statement.
- A verifier interrogates the prover with questions related to a statement, prover answers with intent to convince the verifier of the correctness of the statement

What are interactive proofs?

- We can model the concept of a proof as an interaction between a "prover" and a "verifier".

How good is the prover?

- The goal of a verifier is to assert the correctness of a statement.
- A verifier interrogates the prover with questions related to a statement, prover answers with intent to convince the verifier of the correctness of the statement

What are interactive proofs?

- We can model the concept of a proof as an interaction between a "prover" and a "verifier".

How good is the prover?

- The goal of a verifier is to assert the correctness of a statement.
- A verifier interrogates the prover with questions related to a statement, prover answers with intent to convince the verifier of the correctness of the statement

What are interactive proofs?

- We can model the concept of a proof as an interaction between a "prover" and a "verifier".

How good is the prover?

- The goal of a verifier is to assert the correctness of a statement.

How much interaction?

- A verifier interrogates the prover with questions related to a statement, prover answers with intent to convince the verifier of the correctness of the statement

Interactive Proofs and Complexity Theory: Hiding behind \exists

Interactive Proofs and Complexity Theory: Hiding behind \exists

- Can we capture NP using an interactive proof? Yes!

Interactive Proofs and Complexity Theory: Hiding behind \exists

- Can we capture NP using an interactive proof? Yes!
- A poly-time machine asking a "machine" to provide a certificate.

Interactive Proofs and Complexity Theory: Hiding behind \exists

- Can we capture NP using an interactive proof? Yes!
- A poly-time machine asking a "machine" to provide a certificate.

Verifier

Interactive Proofs and Complexity Theory: Hiding behind \exists

- Can we capture NP using an interactive proof? Yes!
- A poly-time machine asking a "machine" to provide a certificate.

Verifier

Prover

Interactive Proofs and Complexity Theory: Hiding behind \exists

- Can we capture NP using an interactive proof? Yes!
- A poly-time machine asking a "machine" to provide a certificate.
Verifier
Prover
- Here, the verifier V , is a polynomial time Turing machine which takes strings of a language L and outputs 1 if the string is in L or 0 otherwise.

Interactive Proofs and Complexity Theory: Hiding behind \exists

- Can we capture NP using an interactive proof? Yes!
- A poly-time machine asking a "machine" to provide a certificate.
Verifier

Prover

- Here, the verifier V , is a polynomial time Turing machine which takes strings of a language L and outputs 1 if the string is in L or 0 otherwise.
- The Prover P, is a function that maps strings to a certificate or "Sorry, not in the language".

Interactive Proofs and Complexity Theory: Trusting Strangers

- The verifier still has to verify the certificate!

Interactive Proofs and Complexity Theory: Trusting Strangers

- The verifier still has to verify the certificate!
- Provers are always trying to prove correctness, even if a statement is not correct.

Interactive Proofs and Complexity Theory: Trusting Strangers

- The verifier still has to verify the certificate!
- Provers are always trying to prove correctness, even if a statement is not correct.
- Even if the prover diligently says that there is no proof, the verifier cannot be sure unless the verifier knows that the prover is all powerful.

Interactive Proof systems: The Protocol

Definition: Let $f, g:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be functions. A k-round interaction of f and g on input $x \in\{0,1\}^{*}$, denoted by $<f, g>(x)$ is the sequence of the following strings $a_{1}, \ldots, a_{k} \in\{0,1\}^{*}$ defined as follows:

$$
\begin{aligned}
& a_{1}=f(x) \\
& a_{2}=g\left(x, a_{1}\right) \\
& \ldots \\
& a_{2 i+1}=f\left(x, a_{1}, \ldots, a_{2 i}\right) \\
& a_{2 i+2}=g\left(x, a_{1}, \ldots, a_{2 i+1}\right)
\end{aligned}
$$

The output of f at the end of the interaction, out $<f, g>(x)$, is defined to be $f\left(x, a_{1}, \ldots, a_{k}\right)$

Interactive Proof systems: The Protocol

Definition: Let $f, g:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ be functions. A k-round interaction of f and g on input $x \in\{0,1\}^{*}$, denoted by $<f, g>(x)$ is the sequence of the following strings $a_{1}, \ldots, a_{k} \in\{0,1\}^{*}$ defined as follows:

$$
\begin{aligned}
& a_{1}=f(x) \\
& a_{2}=g\left(x, a_{1}\right) \\
& \ldots \\
& a_{2 i+1}=f\left(x, a_{1}, \ldots, a_{2 i}\right) \\
& a_{2 i+2}=g\left(x, a_{1}, \ldots, a_{2 i+1}\right)
\end{aligned}
$$

Transcript

The output of f at the end of the interaction, out $<f, g>(x)$, is defined to be $f\left(x, a_{1}, \ldots, a_{k}\right)$

Interactive Proof systems

Interactive Proof systems

Obs 1: If the prover (P) is g and the verifier $(\mathrm{V}) \mathrm{f}$

Interactive Proof systems

Obs 1: If the prover(P) is g and the verifier $(\mathrm{V}) \mathrm{f}$

- The verifier starts

Interactive Proof systems

Obs 1: If the prover (P) is g and the verifier $(\mathrm{V}) \mathrm{f}$

- The verifier starts

Obs 2: The prover must be all powerful

Interactive Proof systems

Obs 1: If the prover (P) is g and the verifier $(V) f$

- The verifier starts

Obs 2: The prover must be all powerful
Obs 3: The verifier should be "efficient"

Interactive Proof systems

Obs 1: If the prover (P) is g and the verifier $(V) f$

- The verifier starts

Obs 2: The prover must be all powerful
Obs 3: The verifier should be "efficient"

- Some sort of "efficient" TM

Interactive Proof systems

Obs 1: If the prover (P) is g and the verifier $(V) f$

- The verifier starts

Obs 2: The prover must be all powerful
Obs 3: The verifier should be "efficient"

- Some sort of "efficient" TM

Obs 4: The transcript must be "short"

Interactive Proof systems

Obs 1: If the prover (P) is g and the verifier $(V) f$

- The verifier starts

Obs 2: The prover must be all powerful
Obs 3: The verifier should be "efficient"

- Some sort of "efficient" TM

Obs 4: The transcript must be "short"

- From Obs 3, if the transcript is not short, the verifier cannot be efficient.

Interactive Proof systems

Obs 1: If the prover (P) is g and the verifier $(V) f$

- The verifier starts

Obs 2: The prover must be all powerful
Obs 3: The verifier should be "efficient"

- Some sort of "efficient" TM

Obs 4: The transcript must be "short"

- From Obs 3, if the transcript is not short, the verifier cannot be efficient.

Obs 5: Both V and P have access to the input x

Interactive Proof systems

Obs 1: If the prover (P) is g and the verifier $(V) f$

- The verifier starts

Obs 2: The prover must be all powerful
Obs 3: The verifier should be "efficient"

- Some sort of "efficient" TM

Deterministic poly-time?
Obs 4: The transcript must be "short"

- From Obs 3, if the transcript is not short, the verifier cannot be efficient.

Obs 5: Both V and P have access to the input x

Interactive Proof systems

Definition: Deterministic proof systems

For $k \geq 1$, We say that a language L has a k-round deterministic interactive proof system if there's a deterministic poly-time TM V that on input x, a_{1}, \ldots, a_{i} runs in time polynomial in $|x|$, satisfying:

$$
\begin{aligned}
& x \in L \Rightarrow \exists P:\{0,1\}^{*} \rightarrow\{0,1\}^{*} \text { out }_{V}<V, P>(x)=1 \text { (Completeness) } \\
& x \notin L \Rightarrow \forall P:\{0,1\}^{*} \rightarrow\{0,1\}^{*} \text { out }_{V}<V, P>(x)=0 \text { (Soundness) }
\end{aligned}
$$

Interactive Proof systems

Interactive Proof systems: dIP

Interactive Proof systems: dIP

- Obs: Since the verifier is poly-time, the transcript must be poly-size. Which means the number of interactions can be at most poly-size.

Interactive Proof systems: dIP

- Obs: Since the verifier is poly-time, the transcript must be poly-size. Which means the number of interactions can be at most poly-size.
- dIP is the set of all languages with poly(n)-round deterministic interactive proof system.

Interactive Proof systems: dIP

- Obs: Since the verifier is poly-time, the transcript must be poly-size. Which means the number of interactions can be at most poly-size.
- dIP is the set of all languages with poly(n)-round deterministic interactive proof system.
- Can't we define a class of constant round deterministic interactive proof systems?

Where is dIP?

Where is dIP?

- Claim: NP $\subseteq \mathbf{d I P}$

Where is dIP?

- Claim: NP $\subseteq \mathbf{d I P}$

Proof: One round protocol for 3SAT, where a prover returns a satisfying assignment for the input if it exists.

Where is dIP?

Where is dIP?

- Claim: dIP $\subseteq \mathbf{N P}$

Where is dIP?

- Claim: dIP $\subseteq \mathbf{N P}$

Proof: Consider a dIP system with P,V. Consider a poly-time verifier M, the entire transcript of a deterministic interaction is a certificate.

Where is dIP?

- Claim: dIP $\subseteq \mathbf{N P}$

Proof: Consider a dIP system with P,V. Consider a poly-time verifier M, the entire transcript of a deterministic interaction is a certificate.
M verifies that the output of each round from the verifier matches that in the transcript by simulating V .

Where is dIP?

- Claim: dIP $\subseteq \mathbf{N P}$

Proof: Consider a dIP system with P,V. Consider a poly-time verifier M, the entire transcript of a deterministic interaction is a certificate.
M verifies that the output of each round from the verifier matches that in the transcript by simulating V .

It does not need to simulate P, as if a certificate exists, the string must be in the language and a prover must exist which outputs matching values in the transcript.

Where is dIP?

- Claim: dIP $\subseteq \mathbf{N P}$

Proof: Consider a dIP system with P,V. Consider a poly-time verifier M, the entire transcript of a deterministic interaction is a certificate.
M verifies that the output of each round from the verifier matches that in the transcript by simulating V .

It does not need to simulate P, as if a certificate exists, the string must be in the language and a prover must exist which outputs matching values in the transcript.

- Lemma: dIP = NP

Where is dIP?
NEXPTIME

EXPTIME

PSPACE

NP=dIP

Interactive Proof systems

Obs 1: If the prover (P) is g and the verifier $(V) f$

- The verifier starts

Obs 2: The prover must be all powerful
Obs 3: The verifier should be "efficient"

- Some sort of "efficient" TM

Obs 4: The transcript must be "short"

- From Obs 3, if the transcript is not short, the verifier cannot be efficient.

Obs 5: Both V and P have access to the input x

Interactive Proof systems

Obs 1: If the prover (P) is g and the verifier $(V) f$

- The verifier starts

Obs 2: The prover must be all powerful
Obs 3: The verifier should be "efficient"

- Some sort of "efficient" TM

Probabilistic poly-time?
Obs 4: The transcript must be "short"

- From Obs 3, if the transcript is not short, the verifier cannot be efficient.

Obs 5: Both V and P have access to the input x

IP: Probabilistic Verifier

Definition [GMR '89]: Probabilistic Verifiers and IP

For $k \geq 1$, we say that a language L has in IPTIME[k] if there's a probabilistic poly-time TM V that has a k-round interaction with $P:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ that on input x

$$
\begin{aligned}
& x \in L \Rightarrow \exists P \operatorname{Pr}_{r}\left[\text { out }_{V}<V, P>(x)=1\right] \geq 2 / 3 \text { (Completeness) } \\
& x \notin L \Rightarrow \forall P \operatorname{Pr}_{r}\left[\text { out }_{V}<V, P>(x)=1\right] \leq 1 / 3 \text { (Soundness) }
\end{aligned}
$$

The probabilities over the random bits r of V.
The class IP is defined as IP = $\bigcup_{c>0}$ IPTIME[nc]

P:BPP::NP:IP

P:BPP::NP:IP

- Lemma: We can boost the completeness and soundness probability by

P:BPP::NP:IP

- Lemma: We can boost the completeness and soundness probability by $1-2^{-n c}$ and $2^{-n^{n c} c}$ respectively for some constant c.

P:BPP::NP:IP

- Lemma: We can boost the completeness and soundness probability by $1-2^{-n c}$ and $2^{-n^{n c}}$ respectively for some constant c.

Proof: Similar to boosting a BPP machine. Polynomially(n^{c}) many independent repetitions of protocol.

P:BPP::NP:IP

- Lemma: We can boost the completeness and soundness probability by 1-2-nct and $2^{-n^{n c}}$ respectively for some constant c.

Proof: Similar to boosting a BPP machine. Polynomially(n^{c}) many independent repetitions of protocol.

Additionally, we can also do all repetitions in parallel by asking multiple questions in each round, thereby decreasing the number of rounds.

Where is IP?

What's in IP?

- Clearly, NP is also in IP.

As dIP is in IP

- So is BPP

The verifier is a BPP machine that ignores the prover

How Big is IP?

How Big is IP?

- Graph isomorphism known to be in NP, hence in IP. Unclear whether nonisomorphism is in NP, but an interactive proof exists.

How Big is IP?

- Graph isomorphism known to be in NP, hence in IP. Unclear whether nonisomorphism is in NP, but an interactive proof exists.
- Graph non-isomorphism is defined as the following language

How Big is IP?

- Graph isomorphism known to be in NP, hence in IP. Unclear whether nonisomorphism is in NP, but an interactive proof exists.
- Graph non-isomorphism is defined as the following language NONISO $=\left\{\left(G_{1}, G_{2}\right) \mid G_{1}\right.$ is not isomorphic to $\left.G_{2}\right\}$

How Big is IP?

- Graph isomorphism known to be in NP, hence in IP. Unclear whether nonisomorphism is in NP, but an interactive proof exists.
- Graph non-isomorphism is defined as the following language NONISO $=\left\{\left(G_{1}, G_{2}\right) \mid G_{1}\right.$ is not isomorphic to $\left.G_{2}\right\}$
- Lemma: NONISO \in IP [GMW '91]

NONISO in IP: Private Coin Protocol

Private Coin Protocol

1. V randomly picks a graph between G_{1} and G_{2}, say G_{i}. Randomly permute vertices of G_{i} to make H. Send H to P and asks if H is isomorphic to G_{1} or G_{2}
2. Prover tries to figure out whether H is isomorphic to G_{1} or G_{2}, sends $\mathrm{j} \in\{1,2\}$ to V
3. V accepts if $\mathrm{j}==\mathrm{i}$.

NONISO in IP: Private Coin Protocol

NONISO in IP: Private Coin Protocol

G_{1}

G_{2}

NONISO in IP: Private Coin Protocol

G_{1}

G_{2}

NONISO in IP: Private Coin Protocol

NONISO in IP: Private Coin Protocol

G_{1}

G_{2}

NONISO in IP: Private Coin Protocol

NONISO in IP: Private Coin Protocol

G_{1}

G_{2}

NONISO in IP: Private Coin Protocol

G_{1}

G_{2}

NONISO in IP: Private Coin Protocol

G_{1}

G_{2}

NONISO in IP: Private Coin Protocol

G_{1}

G_{2}

NONISO in IP: Private Coin Protocol

NONISO in IP: Private Coin Protocol

- If G_{1} and G_{2} are not isomorphic, then the prover should be able to compare every permutation of H with G_{1} and G_{2} to be able to answer correctly.

NONISO in IP: Private Coin Protocol

- If G_{1} and G_{2} are not isomorphic, then the prover should be able to compare every permutation of H with G_{1} and G_{2} to be able to answer correctly.
- The probability of acceptance when the string is in the language is 1 . (Perfect Completeness)

NONISO in IP: Private Coin Protocol

- If G_{1} and G_{2} are not isomorphic, then the prover should be able to compare every permutation of H with G_{1} and G_{2} to be able to answer correctly.
- The probability of acceptance when the string is in the language is 1 . (Perfect Completeness)
- If they are not isomorphic, the best the prover can do is to guess at random. So the probability of acceptance when it isn't in the language is $1 / 2$. We can decrease this be multiple repetitions.

What's in IP?

- Clearly, NP is also in IP.

As dIP is in IP

- So is BPP

The verifier is a BPP machine that ignores the prover

- NONISO in IP

Interactive Proof systems

Obs 1: If the prover (P) is g and the verifier $(V) f$

Obs 2: The prover must be all powerful
Obs 3: The verifier should be "efficient"
Probabilistic poly-time.
Obs 4: The transcript must be "short"
Obs 5: Both V and P have access to the input x

Interactive Proof systems

Obs 1: If the prover (P) is g and the verifier $(V) f \longleftarrow$ Who starts?

Obs 2: The prover must be all powerful
Obs 3: The verifier should be "efficient"
Probabilistic poly-time.
Obs 4: The transcript must be "short"
Obs 5: Both V and P have access to the input x

Interactive Proof systems

Obs 1: If the prover (P) is g and the verifier $(V) f \longleftarrow$ Who starts?

Obs 2: The prover must be all powerful \longleftarrow Probabilistic?
Obs 3: The verifier should be "efficient"

Obs 4: The transcript must be "short"
Obs 5: Both V and P have access to the input x

Interactive Proof systems

Obs 1: If the prover (P) is g and the verifier $(V) f \longleftarrow$ Who starts?

Obs 2: The prover must be all powerful \longleftarrow Probabilistic?
Obs 3: The verifier should be "efficient"

Obs 4: The transcript must be "short"
Obs 5: Both V and P have access to the input x
What about random bits of V ?

AM and MA: Public and Private coins

AM and MA: Public and Private coins

Constant round interactive proofs with public coins: AM and MA.

AM and MA: Public and Private coins

Constant round interactive proofs with public coins: AM and MA.

AM and MA: Public and Private coins

Constant round interactive proofs with public coins: AM and MA.
Prover starts
We have already seen the set lower bound protocol, which was used to show that graph non-isomorphism is in BP.NP

AM and MA: Public and Private coins

Constant round interactive proofs with public coins: AM and MA.
Prover starts
We have already seen the set lower bound protocol, which was used to show that graph non-isomorphism is in BP.NP

- Theorem: BP.NP $=\mathbf{A M} \subseteq \boldsymbol{\Sigma}_{3}$

AM and MA: Public and Private coins

Constant round interactive proofs with public coins: AM and MA. Prover starts

We have already seen the set lower bound protocol, which was used to show that graph non-isomorphism is in BP.NP

- Theorem: BP.NP $=\mathbf{A M} \subseteq \boldsymbol{\Sigma}_{3}$
- Theorem [Babai ‘88]: AM[k] = AM[2] for constant k

AM and MA: Public and Private coins

Constant round interactive proofs with public coins: AM and MA.

We have already seen the set lower bound protocol, which was used to show that graph non-isomorphism is in BP.NP

- Theorem: BP.NP $=\mathbf{A M} \subseteq \boldsymbol{\Sigma}_{3}$
- Theorem [Babai ‘88]: AM[k] = AM[2] for constant k
- Theorem $[G S$ ' 86$]: \mathbf{A M}[\mathbf{k}] \subseteq \mathbf{I P}[\mathbf{k}] \subseteq \mathbf{A M}[\mathbf{k}+2]$ for polynomial \mathbf{k}.

What's in IP?

Theorem: IP \subseteq PSPACE

Theorem: IP \subseteq PSPACE

Proof Idea: Since we restrict certificates to be poly-size, it's easy to see that one can use a PSPACE machine to run through all possible transcripts to simulate a prover and calculate exactly the acceptance probability.

Theorem: IP \subseteq PSPACE

Proof Idea: Since we restrict certificates to be poly-size, it's easy to see that one can use a PSPACE machine to run through all possible transcripts to simulate a prover and calculate exactly the acceptance probability.

Proof: Consider a language A in IP with a verifier V. Let the transcript be exactly of size $p=\operatorname{poly}(n)$ for all inputs x of size n. We will construct a PSPACE machine M which decides A .

Theorem: IP \subseteq PSPACE

Theorem: IP \subseteq PSPACE

Definition: For any string x, we define

$$
\operatorname{Pr}[V \text { accepts } x]=\max _{\mathrm{p}} \operatorname{Pr}[\langle V, P>\text { accepts } x]
$$

If x is in A, then it is at least $2 / 3$ and at most $1 / 3$ if it is not.

Theorem: IP \subseteq PSPACE

Definition: For any string x, we define

$$
\operatorname{Pr}[V \text { accepts } x]=\max _{\mathrm{p}} \operatorname{Pr}[<V, P>\text { accepts } x]
$$

If x is in A, then it is at least $2 / 3$ and at most $1 / 3$ if it is not.
Definition: $M_{j}=m_{1}, \ldots, m_{j}$ is the partial transcript upto length j. m_{i} represents the $\mathrm{i}^{\text {th }}$ message.

Theorem: IP \subseteq PSPACE

Definition: For any string x, we define

$$
\left.\operatorname{Pr}[V \text { accepts } x]=\max _{\mathrm{p}} \operatorname{Pr}[<\mathrm{V}, \mathrm{P}\rangle \text { accepts } x\right]
$$

If x is in A, then it is at least $2 / 3$ and at most $1 / 3$ if it is not.
Definition: $M_{j}=m_{1}, \ldots, m_{j}$ is the partial transcript upto length j. m_{i} represents the $\mathrm{i}^{\text {th }}$ message.
Definition: $\langle V, P\rangle\left(x, r, M_{j}\right)=$ accept, for a random string r of length p, if there exists $m_{j+1}, . . m_{p}$ such that

1. For $\mathrm{j} \leq \mathrm{i}<\mathrm{p}$ and i is even $\mathrm{V}\left(\mathrm{x}, \mathrm{r}, \mathrm{M}_{\mathrm{i}}\right)=\mathrm{m}_{\mathrm{i}+1}$
2. For $\mathrm{j} \leq \mathrm{i}<\mathrm{p}$ and i is odd $P\left(x, M_{i}\right)=m_{i+1}$
3. m_{p} is accept

Theorem: IP \subseteq PSPACE

Theorem: IP \subseteq PSPACE

Obs: Using previous definitions,

$$
\begin{equation*}
\left.\operatorname{Pr}[<\mathrm{V}, \mathrm{P}\rangle \text { accepts } \mathrm{x} \text { starting at } \mathrm{M}_{\mathrm{j}}\right]=\operatorname{Pr}\left[\langle\mathrm{V}, \mathrm{P}\rangle\left(\mathrm{x}, \mathrm{r}, \mathrm{M}_{\mathrm{j}}\right)=\text { accept }\right] \tag{1}
\end{equation*}
$$

$\operatorname{Pr}\left[V\right.$ accepts x starting at $\left.M_{j}\right]=\max _{\mathrm{P}} \operatorname{Pr}\left[\langle\mathrm{V}, \mathrm{P}\rangle\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$

Theorem: IP \subseteq PSPACE

Obs: Using previous definitions,

$$
\begin{equation*}
\left.\operatorname{Pr}[<\mathrm{V}, \mathrm{P}\rangle \text { accepts } \mathrm{x} \text { starting at } \mathrm{M}_{\mathrm{j}}\right]=\operatorname{Pr}\left[\langle\mathrm{V}, \mathrm{P}\rangle\left(\mathrm{x}, \mathrm{r}, \mathrm{M}_{\mathrm{j}}\right)=\text { accept }\right] \tag{1}
\end{equation*}
$$

$\operatorname{Pr}\left[V\right.$ accepts \times starting at $\left.M_{j}\right]=\max _{\mathrm{P}} \operatorname{Pr}\left[\langle\mathrm{V}, \mathrm{P}\rangle\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$

The goal is now to compute the probability of V accepting x starting from M_{0}. If this is greater than $2 / 3$ then x must be in A, if it less than $1 / 3$ then it must not be in A. We do this recursively.

Theorem: IP \subseteq PSPACE

$$
\begin{aligned}
& w t-\operatorname{avg}_{\mathrm{m}_{-j+1\}}} \mathrm{N}_{\left.\mathrm{M}_{-} j+1\right\}}=\sum_{\mathrm{m}_{-j+1\}}}\left(\left(\operatorname{Pr}\left[\mathrm{V}\left(\mathrm{w}, \mathrm{r}, \mathrm{M}_{\mathrm{j}}\right)=\mathrm{m}_{\mathrm{j}+1}\right]\right) \cdot \mathrm{N}_{\left.\mathrm{M}_{-} \mathrm{j}+1\right\}}\right)
\end{aligned}
$$

Theorem: IP \subseteq PSPACE

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{M} \mathrm{j}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{M} \mathrm{j}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$

Claim 2: N_{Mj} can be calculated in PSPACE

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{M} j}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$

Claim 2: $\mathrm{N}_{\mathrm{M}\lrcorner}$ can be calculated in PSPACE

We need to prove the following 2 claims, with that the proof is complete.

Theorem: IP \subseteq PSPACE

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{M} \mathrm{j}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{M} \mathrm{j}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$
Proof: We prove by top down induction.

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{M} \mathrm{j}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$
Proof: We prove by top down induction.
Base case: $\mathrm{j}=\mathrm{p}$. The last message must be accept or reject. Hence, the probability of acceptance when the last message is reject is 0 and when the last message is accept, it is 1 . This is exactly how $N_{M j}$ is defined.

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{M} \mathrm{j}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$
Proof: We prove by top down induction.
Base case: $\mathrm{j}=\mathrm{p}$. The last message must be accept or reject. Hence, the probability of acceptance when the last message is reject is 0 and when the last message is accept, it is 1 . This is exactly how $N_{M j}$ is defined.

Inductive step: Assume the claim to be true for some $j+1 \leq p$. We have 2 cases, one when j is even and when j is odd.

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{M} \mathrm{j}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$
Proof: We prove by top down induction.
Base case: $\mathrm{j}=\mathrm{p}$. The last message must be accept or reject. Hence, the probability of acceptance when the last message is reject is 0 and when the last message is accept, it is 1 . This is exactly how $N_{M j}$ is defined.

Inductive step: Assume the claim to be true for some $j+1 \leq p$. We have 2 cases, one when j is even and when j is odd.

IH: $\mathrm{N}_{\mathrm{M}_{\left._j+1\right\}}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}+1}\right]$

Theorem: IP \subseteq PSPACE

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{M} \mathrm{j}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{M} \mathrm{j}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$
When j is even, the message m_{j+1} is from V to P. From the definition of $N_{M j}$

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{M} \mathrm{j}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$
When j is even, the message m_{j+1} is from V to P. From the definition of $N_{M j}$

$$
\mathrm{N}_{\mathrm{M} j}=\sum_{\left.\mathrm{m}_{-} \mathrm{j}+1\right\}}\left(\left(\operatorname{Pr}\left[\mathrm{V}\left(\mathrm{w}, \mathrm{r}, \mathrm{M}_{\mathrm{j}}\right)=\mathrm{m}_{\mathrm{j}+1}\right]\right) \cdot \mathrm{N}_{\left.\mathrm{M}_{-} \mathrm{j}+1\right\}}\right)
$$

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{M} \mathrm{j}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$
When j is even, the message m_{j+1} is from V to P. From the definition of $N_{M j}$

$$
\mathrm{N}_{\mathrm{M} \mathrm{j}}=\sum_{\left.\mathrm{m}_{-} \mathrm{j}+1\right\}}\left(\left(\operatorname{Pr}\left[\mathrm{V}\left(\mathrm{w}, \mathrm{r}, \mathrm{M}_{\mathrm{j}}\right)=\mathrm{m}_{\mathrm{j}+1}\right]\right) \cdot \mathrm{N}_{\left.\mathrm{M}_{-} \mathrm{j}+1\right\}}\right)
$$

From the Induction hypothesis, we can conclude

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{M} \mathrm{j}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$
When j is even, the message m_{j+1} is from V to P. From the definition of $N_{M j}$

$$
\mathrm{N}_{\mathrm{M} \mathrm{j}}=\sum_{\left.\mathrm{m}_{-} \mathrm{j}+1\right\}}\left(\left(\operatorname{Pr}\left[\mathrm{V}\left(\mathrm{w}, \mathrm{r}, \mathrm{M}_{\mathrm{j}}\right)=\mathrm{m}_{\mathrm{j}+1}\right]\right) \cdot \mathrm{N}_{\left.\mathrm{M}_{-} \mathrm{j}+1\right\}}\right)
$$

From the Induction hypothesis, we can conclude

$$
N_{M\lrcorner j}=\sum_{m_{-j+1\}}}\left(\left(\operatorname{Pr}\left[V\left(w, r, M_{j}\right)=m_{j+1}\right]\right) \quad \operatorname{Pr}\left[V \text { accepts } x \text { starting at } M_{j+1}\right]\right)
$$

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{M} \mathrm{j}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$
When j is even, the message m_{j+1} is from V to P. From the definition of $N_{M j}$

$$
N_{M j}=\sum_{m_{-j+1\}}}\left(\left(\operatorname{Pr}\left[V\left(w, r, M_{j}\right)=m_{j+1}\right]\right) \cdot N_{M_{-j i+1\}}}\right)
$$

From the Induction hypothesis, we can conclude

$$
N_{M j}=\sum_{\left.m _j+1\right\}}\left(\left(\operatorname{Pr}\left[V\left(w, r, M_{j}\right)=m_{j+1}\right]\right) \quad \operatorname{Pr}\left[V \text { accepts } x \text { starting at } M_{j+1}\right]\right)
$$

This is the total probability partitioned over all possible messages $\mathrm{m}_{\mathrm{j}+1}$. Hence,

Theorem: IP \subseteq PSPACE

Claim 1: $\mathrm{N}_{\mathrm{Mj}}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$
When j is even, the message m_{j+1} is from V to P. From the definition of $N_{M j}$
$N_{M j}=\sum_{m_{-j+1\}}}\left(\left(\operatorname{Pr}\left[V\left(w, r, M_{j}\right)=m_{j+1}\right]\right) \cdot N_{M_{-}(i+1\}}\right)$
From the Induction hypothesis, we can conclude

$$
N_{M j}=\sum_{\left.m _j+1\right\}}\left(\left(\operatorname{Pr}\left[V\left(w, r, M_{j}\right)=m_{j+1}\right]\right) \quad \operatorname{Pr}\left[V \text { accepts } x \text { starting at } M_{j+1}\right]\right)
$$

This is the total probability partitioned over all possible messages $\mathrm{m}_{\mathrm{j}+1}$. Hence,
$N_{M j}=\operatorname{Pr}\left[V\right.$ accepts x starting at $\left.M_{j}\right]$

Theorem: IP \subseteq PSPACE

When j is odd, the message $\mathrm{m}_{\mathrm{j}+1}$ is from P to V . From the definition of $\mathrm{N}_{\mathrm{M} j}$
$\mathrm{N}_{\mathrm{M}\rfloor}=\max _{\left.\mathrm{m}_{-} j+1\right\}} \mathrm{N}_{\left.\mathrm{M}_{-} j i+1\right\}}$
$N_{M\rfloor}=\max _{\mathrm{m}_{-}(\mathrm{i}+1\}} \operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}+1}\right]$

$$
=\max _{\mathrm{m}_{_}\langle i+1\}} \max _{\mathrm{P}^{\prime}} \operatorname{Pr}\left[<\mathrm{V}, \mathrm{P}^{\prime}>\left(\mathrm{x}, \mathrm{r}, \mathrm{M}_{\mathrm{j}+1}\right)=\text { accept }\right]
$$

$1 \ldots \leq \max _{\mathrm{P}} \operatorname{Pr}\left[<\mathrm{V}, \mathrm{P}>\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right], \mathrm{P}$ can send the maximizing $\mathrm{m}_{\mathrm{j}+1}^{*}$
$2 \ldots \geq \max _{\mathrm{P}} \operatorname{Pr}\left[<\mathrm{V}, \mathrm{P}>\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right], \mathrm{P}$ cannot be better than P^{\prime} Therefore,
$\mathrm{N}_{\mathrm{M}\lrcorner}=\operatorname{Pr}\left[\mathrm{V}\right.$ accepts x starting at $\left.\mathrm{M}_{\mathrm{j}}\right]$

Theorem: IP \subseteq PSPACE

Claim 2: $\mathrm{N}_{\mathrm{M} j}$ can be calculated in PSPACE

From the above proof, it also clear that these values can be calculated in PSPACE recursively. The depth of the recursion would be p. M calculates $\mathrm{N}_{\mathrm{M} j}$ for every j and M_{j}.

Where is IP?

$c o-N P \subseteq I P ?$

$c o-N P \subseteq I P ?$

- One way to show $\mathrm{PH} \subseteq \mathrm{IP}$, is to show a PH -complete problem is in IP

$c o-N P \subseteq I P ?$

- One way to show $\mathrm{PH} \subseteq \mathrm{IP}$, is to show a PH -complete problem is in IP

Doesn't exit(as far as we know)

$\mathrm{co}-\mathrm{NP} \subseteq I P ?$

- One way to show $\mathrm{PH} \subseteq \mathrm{IP}$, is to show a PH -complete problem is in IP

Doesn't exit(as far as we know)

- Or, show every Σ_{i}-SAT is in IP

$\mathrm{co}-\mathrm{NP} \subseteq I P ?$

- One way to show $\mathrm{PH} \subseteq \mathrm{IP}$, is to show a PH -complete problem is in IP

Doesn't exit(as far as we know)

- Or, show every Σ_{i}-SAT is in IP
- We can prove $P^{\# P} \subseteq I P$ if \#3SAT is in IP, would automatically imply PH is in IP by Toda's theorem

$\mathrm{co}-\mathrm{NP} \subseteq I P ?$

- One way to show $\mathrm{PH} \subseteq \mathrm{IP}$, is to show a PH -complete problem is in IP

Doesn't exit(as far as we know)

- Or, show every Σ_{i}-SAT is in IP
- We can prove $P^{\# P} \subseteq I P$ if \#3SAT is in IP, would automatically imply PH is in IP by Toda's theorem
- Proven by [LFKN ‘92]

\#3SAT Prerequisites

- Definition: \#3SAT

\#3SAT $=\{(\phi, k) \mid$ where ϕ is a $3 C N F$ with exactly k satisfying assignments $\}$
$\# \phi$ is the number of satisfying assignments of 3CNF ϕ
Say $\phi\left(x_{1}, \ldots x_{n}\right)$, then

$$
\# \phi=\Sigma_{\mathrm{b}_{\mathrm{b}} 1 \in\{0,1\}} \Sigma_{\mathrm{b}_{-} 2 \in\{0,1\}} . . \Sigma_{\mathrm{b} _n \in\{0,1\}} \phi\left(\mathrm{b}_{1}, \ldots \mathrm{~b}_{\mathrm{n}}\right)
$$

$\phi\left(b_{1}, \ldots b_{n}\right)=1$ if $b_{1} \ldots b_{n}$ is a satisfying assignment, 0 otherwise
We define $\# \phi\left(\mathrm{a}_{1}, \ldots \mathrm{a}_{\mathrm{i}-1}\right)$ as
$\# \phi\left(\mathrm{a}_{1}, \ldots \mathrm{a}_{\mathrm{i}-1}\right)=\Sigma_{\mathrm{b} _i \in\{0,1\}} . . \Sigma_{\mathrm{b} _n \in\{0,1\}} \phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{i}-1}, \mathrm{~b}_{\mathrm{i}}, \ldots, \mathrm{b}_{\mathrm{n}}\right)$

\#3SAT Prerequisites

Observation*: $\# \phi\left(a_{1}, \ldots a_{i-1}\right)=\# \phi\left(a_{1}, \ldots a_{i-1}, 0\right)+\# \phi\left(a_{1}, \ldots a_{i-1}, 1\right)$

$$
\begin{aligned}
& \# \phi\left(\mathrm{a}_{1}, \ldots \mathrm{a}_{\mathrm{i}-1}\right)=\Sigma_{\mathrm{b}_{-} \in\{0,1\}} \ldots \Sigma_{\mathrm{b}_{-} \mathrm{n} \in\{0,1\}} \phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{i}-1}, \mathrm{~b}_{\mathrm{i}}, \ldots, \mathrm{~b}_{\mathrm{n}}\right) \\
& =\Sigma_{\mathrm{b}_{-i}\{1+1\}\{0,1\}} \ldots \Sigma_{\mathrm{b}_{-} \mathrm{n}\{\{0,1\}} \phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{i}-1}, 0, \ldots, \mathrm{~b}_{\mathrm{n}}\right)+\Sigma_{\mathrm{b}_{-}\{i+1\} \in\{0,1\}} \ldots \Sigma_{\mathrm{b}_{-} \mathrm{n}\{\{0,1\}} \phi\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{i}-1}, 1, \ldots, \mathrm{~b}_{\mathrm{n}}\right) \\
& =\# \phi\left(a_{1}, \ldots a_{i-1}, 0\right)+\# \phi\left(a_{1}, \ldots a_{i-1}, 1\right)
\end{aligned}
$$

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

Say the input is (ϕ, K). The verifier has to check whether ϕ indeed has K satisfying assignments. Try to verify observation*

\#3SAT $\subseteq I P ?[$ Attempt 1]

Say the input is (ϕ, K). The verifier has to check whether ϕ indeed has K satisfying assignments. Try to verify observation*

1. Step 0: Verifier sends ϕ to the Prover and asks for number of satisfying assignments to ϕ

\#3SAT $\subseteq I P ?[$ Attempt 1]

Say the input is (ϕ, K). The verifier has to check whether ϕ indeed has K satisfying assignments. Try to verify observation*

1. Step 0: Verifier sends ϕ to the Prover and asks for number of satisfying assignments to ϕ
2. Step 1: Prover sends K

\#3SAT $\subseteq I P ?[$ Attempt 1]

Say the input is (ϕ, K). The verifier has to check whether ϕ indeed has K satisfying assignments. Try to verify observation*

1. Step 0: Verifier sends ϕ to the Prover and asks for number of satisfying assignments to ϕ
2. Step 1: Prover sends K
3. Step 2: Verifier sets x_{1} to 0 in $\phi\left(\phi_{1}\right)$ and x_{1} to $1\left(\phi_{2}\right)$ and evaluates ϕ_{1} and ϕ_{2} and asks the verifier for $\# \phi_{1}$ and $\# \phi_{2}$

\#3SAT $\subseteq I P ?[$ Attempt 1]

Say the input is (ϕ, K). The verifier has to check whether ϕ indeed has K satisfying assignments. Try to verify observation*

1. Step 0: Verifier sends ϕ to the Prover and asks for number of satisfying assignments to ϕ
2. Step 1: Prover sends K
3. Step 2: Verifier sets x_{1} to 0 in $\phi\left(\phi_{1}\right)$ and x_{1} to $1\left(\phi_{2}\right)$ and evaluates ϕ_{1} and ϕ_{2} and asks the verifier for $\# \phi_{1}$ and $\# \phi_{2}$
4. Step 3: Prover sends k_{1} and k_{2}

\#3SAT $\subseteq I P ?[$ Attempt 1]

Say the input is (ϕ, K). The verifier has to check whether ϕ indeed has K satisfying assignments. Try to verify observation*

1. Step 0: Verifier sends ϕ to the Prover and asks for number of satisfying assignments to ϕ
2. Step 1: Prover sends K
3. Step 2: Verifier sets x_{1} to 0 in $\phi\left(\phi_{1}\right)$ and x_{1} to $1\left(\phi_{2}\right)$ and evaluates ϕ_{1} and ϕ_{2} and asks the verifier for $\# \phi_{1}$ and $\# \phi_{2}$
4. Step 3: Prover sends k_{1} and k_{2}
5. Step 4: Verifier verifies that $K=k_{1}+k_{2}$

\#3SAT $\subseteq I P ?[$ Attempt 1]

Say the input is (ϕ, K). The verifier has to check whether ϕ indeed has K satisfying assignments. Try to verify observation*

1. Step 0: Verifier sends ϕ to the Prover and asks for number of satisfying assignments to ϕ
2. Step 1: Prover sends K
3. Step 2: Verifier sets x_{1} to 0 in $\phi\left(\phi_{1}\right)$ and x_{1} to $1\left(\phi_{2}\right)$ and evaluates ϕ_{1} and ϕ_{2} and asks the verifier for $\# \phi_{1}$ and $\# \phi_{2}$
4. Step 3: Prover sends k_{1} and k_{2}
5. Step 4: Verifier verifies that $K=k_{1}+k_{2}$
6. Repeat by setting each variable x_{i} to 0 and 1 and verifying

\#3SAT \subseteq IP? [Attempt 1]

Say the input is (ϕ, K). The verifier has to check whether ϕ indeed has K satisfying assignments. Try to verify observation*

1. Step 0: Verifier sends ϕ to the Prover and asks for number of satisfying assignments to ϕ
2. Step 1: Prover sends K
3. Step 2: Verifier sets x_{1} to 0 in $\phi\left(\phi_{1}\right)$ and x_{1} to $1\left(\phi_{2}\right)$ and evaluates ϕ_{1} and ϕ_{2} and asks the verifier for $\# \phi_{1}$ and $\# \phi_{2}$
4. Step 3: Prover sends k_{1} and k_{2}
5. Step 4: Verifier verifies that $K=k_{1}+k_{2}$
6. Repeat by setting each variable x_{i} to 0 and 1 and verifying
7. Step ??: Once all variables have been set, Verifier asks the prover the number of satisfying assignments and also verifies the answer by itself.
\#3SAT $\subseteq I P ?[$ Attempt 1]
\#3SAT $\subseteq I P ?[$ Attempt 1]

$$
\phi\left(x_{1}, . . x_{n}\right)
$$

\#3SAT $\subseteq I P ?[$ Attempt 1]

$$
\phi\left(x_{1}, . . x_{n}\right)
$$

\#3SAT $\subseteq I P ?[$ Attempt 1]

$$
\stackrel{\phi\left(x_{1}, . . x_{n}\right)}{\&\left(0, . . x_{n}\right)}
$$

\#3SAT $\subseteq I P ?[$ Attempt 1]

$$
\stackrel{\phi\left(x_{1}, . . x_{n}\right)}{\phi\left(0, . . x_{n}\right) \quad \mathrm{k} 1}
$$

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?$ [Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

\#3SAT $\subseteq I P ?[$ Attempt 1]

Problem: Requires exponential rounds of interaction to enumerate over all assignments

\#3SAT $\subseteq I P ?[$ Attempt 1]

Problem: Requires exponential rounds of interaction to enumerate over all assignments

Issues: We are not using the probabilistic nature of the verifier

\#3SAT $\subseteq I P ?[$ Attempt 1]

Problem: Requires exponential rounds of interaction to enumerate over all assignments

Issues: We are not using the probabilistic nature of the verifier

Idea: Randomly choose a path in the tree
\#3SAT $\subseteq I P ?$ [Attempt 2]
\#3SAT $\subseteq I P ?$ [Attempt 2]

$$
\phi\left(x_{1}, . . x_{n}\right)
$$

\#3SAT $\subseteq I P ?$ [Attempt 2]

$$
\phi\left(x_{1}, . . x_{n}\right)
$$

\#3SAT $\subseteq I P ?$ [Attempt 2]

$$
\stackrel{\phi\left(x_{1}, . . x_{n}\right)}{\phi\left(0, . . x_{n}\right)}
$$

\#3SAT $\subseteq I P ?$ [Attempt 2]

$$
\stackrel{\phi\left(x_{1}, . . x_{n}\right)}{\phi\left(0, . . x_{n}\right) \quad \mathrm{k} 1}
$$

\#3SAT $\subseteq I P ?$ [Attempt 2]

\#3SAT ؟IP? [Attempt 2]

$$
\phi(1,0, . .1) \quad 1
$$

\#3SAT ؟IP? [Attempt 2]

\#3SAT $\subseteq I P ?$ [Attempt 2]

\#3SAT $\subseteq I P ?[$ Attempt 2]

- Clearly, we may accidentally accept the wrong value.

\#3SAT \subseteq IP? [Attempt 2]

- Clearly, we may accidentally accept the wrong value.
- What if k1 was not actually the number of satisfying assignments of ϕ_{1} and k2 is correct and we decide to go down k2. How lucky can the prover get?

\#3SAT \subseteq IP? [Attempt 2]

- Clearly, we may accidentally accept the wrong value.
- What if k1 was not actually the number of satisfying assignments of ϕ_{1} and k2 is correct and we decide to go down k2. How lucky can the prover get?

\#3SAT ؟IP? [Attempt 2]

- Clearly, we may accidentally accept the wrong value.
- What if k1 was not actually the number of satisfying assignments of ϕ_{1} and k2 is correct and we decide to go down k2. How lucky can the prover get?
- The probability that the prover actually gets caught is 2^{-n}. We need to catch every wrong branch at every step.

\#3SAT ؟IP? [Attempt 2]

- Clearly, we may accidentally accept the wrong value.
- What if $k 1$ was not actually the number of satisfying assignments of ϕ_{1} and $k 2$ is correct and we decide to go down k2. How lucky can the prover get?
- The probability that the prover actually gets caught is 2^{-n}. We need to catch every wrong branch at every step.
- So, we always accept when the number of satisfying assignments are correct, but we will also accept when it is incorrect with probability $1-2^{-n}$.

Boolean is F_{2}

Boolean is F_{2}

Every boolean formula can be expressed as a polynomial over elements of F_{2}
We use the following trick:

$$
\begin{aligned}
& a \wedge b \equiv a b \\
& a \vee b \equiv 1-(1-a)(1-b) \equiv a+b-a b \\
& \neg a \equiv(1-a)
\end{aligned}
$$

True $\equiv 1$

$$
\text { False } \equiv 0
$$

Example:

$$
\left(x_{1} \vee x_{3} \vee \neg x_{4}\right) \equiv\left(x_{1}+x_{3}-x_{1} x_{3}\right)+\left(1-x_{4}\right)-\left(x_{1}+x_{3}-x_{1} x_{3}\right)\left(1-x_{4}\right)
$$

Boolean is F_{2}

Boolean is F_{2}

- We are now able to express a boolean formula ϕ as a polynomial P_{ϕ}

Boolean is F_{2}

- We are now able to express a boolean formula ϕ as a polynomial P_{ϕ}
- The degree of each clause will be at most 3 , as ϕ is a 3CNF, and the net degree will be at most 3 m where there are m clauses in ϕ.

Boolean is F_{2}

- We are now able to express a boolean formula ϕ as a polynomial P_{ϕ}
- The degree of each clause will be at most 3 , as ϕ is a 3CNF, and the net degree will be at most 3 m where there are m clauses in ϕ.
- The size of the polynomial will also be bound polynomial in the size of ϕ as we don't need to expand the terms

Boolean is F_{2}

We can restate our equations as follows, where X_{i} s are now formal variables

$$
\begin{gathered}
\# \phi=\Sigma_{\mathrm{b}_{_} 1 \in\{0,1\}} \Sigma_{\mathrm{b}_{2} \in\{0,1\}} \ldots \Sigma_{\mathrm{b}_{-} _\in\{0,1\}} \mathrm{P}_{\phi}\left(\mathrm{b}_{1}, \ldots \mathrm{~b}_{\mathrm{n}}\right) \\
\# \phi\left(\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{i}-1}\right)=\Sigma_{\mathrm{b}_{\mathrm{L}} \in\{\{0,1\}} \ldots \Sigma_{\mathrm{b}_{\mathrm{b}} _\in\{0,1\}} \mathrm{P}_{\phi}\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{i}-1}, \mathrm{~b}_{\mathrm{i}}, \ldots, \mathrm{~b}_{\mathrm{n}}\right) \\
\# \phi\left(\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{i}}\right)=\# \phi\left(\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{i}-1}, 0\right)+\# \phi\left(\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{i}-1}, 1\right)
\end{gathered}
$$

Theorem[LFKN ‘92]: \#3SAT $\in I P$

Theorem[LFKN ‘92]: \#3SAT $\in I P$

Key Idea: Arithmetization

Theorem[LFKN ‘92]: \#3SAT $\in I P$

Key Idea: Arithmetization

None of the previous definitions are impacted if we moved from F_{2} to F_{p} as long as p is a suitably large prime

Theorem[LFKN ‘92]: \#3SAT $\in I P$

Key Idea: Arithmetization

None of the previous definitions are impacted if we moved from F_{2} to F_{p} as long as p is a suitably large prime

Once we do that, we can plug in any element in F_{p} into our polynomial

Theorem[LFKN ‘92]: \#3SAT $\in I P$

Theorem[LFKN ‘92]: \#3SAT $\in I P$

- How large should p be?

Theorem[LFKN '92]: \#3SAT $\in I P$

- How large should p be?

The number of satisfying assignments can be at most 2^{n}, therefore, we can chose a prime between 2^{n} and $2^{2 n}$.

Theorem[LFKN '92]: \#3SAT $\in I P$

- How large should p be?

The number of satisfying assignments can be at most 2^{n}, therefore, we can chose a prime between 2^{n} and $2^{2 n}$.

We ask the prover to provide this prime at the start of the protocol and the verifier can verify primalty in polynomial time.

Sumcheck protocol

A generic protocol to verify equations of the form

$$
\begin{equation*}
\mathrm{K}=\Sigma_{\mathrm{b}_{-} 1 \in\{0,1\}} \ldots \Sigma_{\mathrm{b}_{-} \mathrm{n} \in\{0,1\}} \mathrm{g}\left(\mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{n}}\right) \tag{1}
\end{equation*}
$$

Where g is any polynomial of small size and which can be evaluated in polynomial time.

Sumcheck protocol

A generic protocol to verify equations of the form

$$
\begin{equation*}
K=\Sigma_{b_{-} 1 \in\{0,1\}} \ldots \Sigma_{b_{-} n \in\{0,1\}} g\left(X_{1}, \ldots X_{n}\right) \tag{1}
\end{equation*}
$$

Where g is any polynomial of small size and which can be evaluated in polynomial time.

Obs: P_{ϕ} is a degree $3 m$ polynomial it's size is of the order of the size of ϕ. It can also be easily evaluated in the same way we evaluate formulas on assignments. So we can use the sumcheck protocol.

Sumcheck protocol

Sumcheck protocol

Obs: $h\left(X_{1}\right)=\Sigma_{\mathrm{b}_{-} \in\{0,1\}} \ldots \Sigma_{\mathrm{b}_{-} \mathrm{n}\{\{0,1\}} \mathrm{g}\left(\mathrm{X}_{1}, \mathrm{~b}_{2}, \ldots \mathrm{~b}_{\mathrm{n}}\right)$

Sumcheck protocol

Obs: $h\left(X_{1}\right)=\Sigma_{\mathrm{b}_{-} \in\{\{0,1\}} \ldots \Sigma_{\mathrm{b}_{-} \mathrm{n} \in\{0,1\}} \mathrm{g}\left(\mathrm{X}_{1}, \mathrm{~b}_{2}, \ldots \mathrm{~b}_{\mathrm{n}}\right)$
Is a univariate polynomial of degree at most m in the variable X_{1}.

Sumcheck protocol

Obs: $h\left(X_{1}\right)=\Sigma_{\mathrm{b}_{-} 2 \in\{0,1\}} \ldots \Sigma_{\mathrm{b}_{-} \mathrm{n}\{\{0,1\}} \mathrm{g}\left(\mathrm{X}_{1}, \mathrm{~b}_{2}, \ldots \mathrm{~b}_{\mathrm{n}}\right)$
Is a univariate polynomial of degree at most m in the variable X_{1}.
If $\mathrm{eq}(1)$ is true, then $\mathrm{h}(0)+\mathrm{h}(1)=\mathrm{K}$

Sumcheck protocol

Obs: $h\left(X_{1}\right)=\Sigma_{\mathrm{b}_{-} 2 \in\{0,1\}} \ldots \Sigma_{\mathrm{b}_{-} \mathrm{n}\{\{0,1\}} \mathrm{g}\left(\mathrm{X}_{1}, \mathrm{~b}_{2}, \ldots \mathrm{~b}_{\mathrm{n}}\right)$
Is a univariate polynomial of degree at most m in the variable X_{1}.
If $\mathrm{eq}(1)$ is true, then $\mathrm{h}(0)+\mathrm{h}(1)=\mathrm{K}$

The input to the protocol would be a polynomial $g\left(X_{1}, \ldots, X_{n}\right)$ and K.

Sumcheck protocol

Obs: $h\left(X_{1}\right)=\Sigma_{\mathrm{b}_{-} 2 \in\{0,1\}} . . \Sigma_{\mathrm{b}_{_} \mathrm{n} \in\{0,1\}} \mathrm{g}\left(\mathrm{X}_{1}, \mathrm{~b}_{2}, \ldots \mathrm{~b}_{\mathrm{n}}\right)$
Is a univariate polynomial of degree at most m in the variable X_{1}.
If eq(1) is true, then $h(0)+h(1)=K$

The input to the protocol would be a polynomial $g\left(X_{1}, \ldots, X_{n}\right)$ and K.
Obs: g can be evaluated in polynomial time, however h cannot even be computed in polynomial time

Sumcheck protocol

Input: $g\left(X_{1}, \ldots X_{n}\right), \mathrm{K}$
V: if $\mathrm{n}=1$, verify $\mathrm{K}=\mathrm{g}(0)+\mathrm{g}(1)$
V: It asks the prover to send a polynomial h , as defined previously, a polynomial in X_{1}
P : sends a polynomial s
V : verify that $\mathrm{s}(0)+\mathrm{s}(1)=\mathrm{K}$. Selects a random element from F_{p}, say a. It calculates $\mathrm{s}(\mathrm{a})$.

Recursively solve with the input as
$g\left(a, X_{2}, \ldots X_{n}\right)$ and $s(a)$.

Sumcheck protocol

Sumcheck protocol

$$
g\left(X_{1}, . . X_{n}\right)
$$

Sumcheck protocol

$$
g\left(X_{1}, . . X_{n}\right)
$$

Sumcheck protocol

$$
g\left(X_{1}, . . X_{\mathrm{n}}\right)
$$

Sumcheck protocol

$$
g\left(X_{1}, . . X_{n}\right)
$$

$$
\longleftrightarrow \mathrm{s}_{1}\left(\mathrm{X}_{1}\right)
$$

Sumcheck protocol

```
g(X , .. X }\mp@subsup{|}{n}{}
S
```


Sumcheck protocol

$$
s_{1}(0)+s_{1}(1)=k \stackrel{g\left(X_{1}, . . X_{n}\right)}{g\left(a_{1}, X_{2}, \ldots X_{n}\right)}
$$

Sumcheck protocol

$$
g\left(X_{1}, . . X_{n}\right)
$$

$$
\mathrm{s}_{1}(0)+\mathrm{s}_{1}(1)==\mathrm{K}
$$

$$
g\left(a_{1}, X_{2}, \ldots X_{n}\right)
$$

Sumcheck protocol

$$
\begin{aligned}
& g\left(X_{1}, . . X_{n}\right) \\
& \mathrm{s}_{1}(0)+\mathrm{s}_{1}(1)==\mathrm{K} \\
& g\left(a_{1}, X_{2}, \ldots X_{n}\right) \\
& \mathrm{S}_{2}\left(\mathrm{X}_{2}\right)
\end{aligned}
$$

Sumcheck protocol

$$
\mathrm{s}_{1}(0)+\mathrm{s}_{1}(1)=\mathrm{K} \stackrel{g\left(X_{1}, . . X_{n}\right)}{g_{\left(a_{1}, X_{2}, \ldots X_{n}\right)}} \mathrm{s}_{1}\left(X_{1}\right)
$$

Sumcheck protocol

$$
g\left(a_{1}, X_{2}, \ldots X_{n}\right)
$$

$$
\mathrm{s}_{2}(0)+\mathrm{s}_{2}(1)==\mathrm{s}_{1}\left(\mathrm{a}_{1}\right)
$$

Sumcheck protocol

$$
g\left(a_{1}, X_{2}, \ldots X_{n}\right)
$$

$$
\mathrm{s}_{2}(0)+\mathrm{s}_{2}(1)==\mathrm{s}_{1}\left(\mathrm{a}_{1}\right)
$$

$$
g\left(a_{1}, a_{2}, \ldots X_{n}\right)
$$

Sumcheck protocol

$$
g\left(a_{1}, X_{2}, \ldots X_{n}\right)
$$

$$
\mathrm{s}_{2}(0)+\mathrm{s}_{2}(1)==\mathrm{s}_{1}\left(\mathrm{a}_{1}\right)
$$

$$
g\left(a_{1}, a_{2}, \ldots X_{n}\right)
$$

Sumcheck protocol

$$
\begin{gathered}
s_{1}(0)+s_{1}(1)==k \underset{g\left(a_{1}, X_{2}, \ldots X_{n}\right)}{s_{2}(0)+s_{2}(1)=s_{1}\left(a_{1}\right)} \underset{g\left(a_{1}, a_{2}, \ldots X_{n}\right)}{\longleftarrow} \frac{g\left(X_{n}\right)}{\longleftarrow}
\end{gathered}
$$

Sumcheck protocol

$$
g\left(X_{1}, . . X_{n}\right)
$$

$$
\mathrm{s}_{1}(0)+\mathrm{s}_{1}(1)==\mathrm{K}
$$

$$
g\left(a_{1}, X_{2}, \ldots X_{n}\right)
$$

$$
\mathrm{s}_{2}(0)+\mathrm{s}_{2}(1)==\mathrm{s}_{1}\left(\mathrm{a}_{1}\right)
$$

$$
g\left(a_{1}, a_{2}, \ldots X_{n}\right)
$$

Sumcheck protocol

$$
\left.\mathrm{s}_{1}(0)+\mathrm{s}_{1}(1)=\mathrm{K} \longleftarrow \mathrm{~g}_{\mathrm{l}}, \ldots \mathrm{X}_{\mathrm{n}}\right)
$$

$$
\mathrm{g}\left(\mathrm{a}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)
$$

$$
s_{2}(0)+s_{2}(1)==s_{1}\left(a_{1}\right)
$$

$$
g\left(a_{1}, a_{2}, \ldots X_{n}\right)
$$

$$
s_{n}(0)+s_{n}(1)==s_{n-1}\left(a_{n-1}\right)
$$

Sumcheck protocol

$$
\left.\mathrm{s}_{1}(0)+\mathrm{s}_{1}(1)=\mathrm{K} \longleftarrow \mathrm{~g}_{\mathrm{l}}, \ldots \mathrm{X}_{\mathrm{n}}\right)
$$

$$
\mathrm{g}\left(\mathrm{a}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)
$$

$$
s_{2}(0)+s_{2}(1)==s_{1}\left(a_{1}\right)
$$

$$
g\left(a_{1}, a_{2}, \ldots X_{n}\right)
$$

$$
s_{n}(0)+s_{n}(1)==s_{n-1}\left(a_{n-1}\right) \quad g\left(a_{1}, a_{2}, \ldots a_{n}\right)==s_{n}\left(a_{n}\right)
$$

Analysis of protocol

Analysis of protocol

- Sending univariate polynomials is sending d numbers where d is the degree of the polynomial.

Analysis of protocol

- Sending univariate polynomials is sending d numbers where d is the degree of the polynomial.
- If eq(1) is true, then the prover sends the correct polynomial h in the first round, ie, $s_{1}=h$. So we will never reject a correct string. (Perfect completeness)

Analysis of protocol

- Sending univariate polynomials is sending d numbers where d is the degree of the polynomial.
- If eq(1) is true, then the prover sends the correct polynomial h in the first round, ie, $s_{1}=h$. So we will never reject a correct string. (Perfect completeness)
- How lucky does the prover need to be for the verifier to accept an incorrect string?

Analysis of Error bound

Analysis of Error bound

What is the probability over a that $\mathrm{s}(\mathrm{a})=\mathrm{h}(\mathrm{a})$ for 2 univariate polynomials s and h ?

Analysis of Error bound

What is the probability over a that $\mathrm{s}(\mathrm{a})=\mathrm{h}(\mathrm{a})$ for 2 univariate polynomials s and h ?
From the Schwartz-Zippel lemma, we have a bound on this number

Analysis of Error bound

What is the probability over a that $\mathrm{s}(\mathrm{a})=\mathrm{h}(\mathrm{a})$ for 2 univariate polynomials s and h ?
From the Schwartz-Zippel lemma, we have a bound on this number

$$
\operatorname{Pr}_{\mathrm{a}}[\mathrm{~s}(\mathrm{a})-\mathrm{h}(\mathrm{a})=0] \leq \mathrm{d} / \mathrm{p}
$$

Analysis of Error bound

What is the probability over a that $\mathrm{s}(\mathrm{a})=\mathrm{h}(\mathrm{a})$ for 2 univariate polynomials s and h ?
From the Schwartz-Zippel lemma, we have a bound on this number

$$
\operatorname{Pr}_{\mathrm{a}}[\mathrm{~s}(\mathrm{a})-\mathrm{h}(\mathrm{a})=0] \leq \mathrm{d} / \mathrm{p}
$$

Where d is the degree of the difference polynomial and p is the size of the field.

Analysis of Error bound

What is the probability over a that $\mathrm{s}(\mathrm{a})=\mathrm{h}(\mathrm{a})$ for 2 univariate polynomials s and h ?
From the Schwartz-Zippel lemma, we have a bound on this number

$$
\operatorname{Pr}_{\mathrm{a}}[\mathrm{~s}(\mathrm{a})-\mathrm{h}(\mathrm{a})=0] \leq \mathrm{d} / \mathrm{p}
$$

Where d is the degree of the difference polynomial and p is the size of the field.
Thus, the probability that at any step, the prover is caught is at least $1-\mathrm{d} / \mathrm{p}$. Therefore, applying the union bound, the probability that the prover is never caught is ($d^{*} n / p$)

Analysis of Error bound

What is the probability over a that $\mathrm{s}(\mathrm{a})=\mathrm{h}(\mathrm{a})$ for 2 univariate polynomials s and h ?
From the Schwartz-Zippel lemma, we have a bound on this number

$$
\operatorname{Pr}_{\mathrm{a}}[\mathrm{~s}(\mathrm{a})-\mathrm{h}(\mathrm{a})=0] \leq \mathrm{d} / \mathrm{p}
$$

Where d is the degree of the difference polynomial and p is the size of the field.
Thus, the probability that at any step, the prover is caught is at least 1-d/p. Therefore, applying the union bound, the probability that the prover is never caught is ($\mathrm{d}^{*} \mathrm{n} / \mathrm{p}$)

Therefore the error probability is less than $3 n^{2} / 2^{n}$ which is less than $1 / 3$ for $n>9$

What's in IP?

TQBF $\subseteq I P ?$

Definition: TQBF

TQBF $=\left\{\Psi=\mathrm{Q}_{1} \mathrm{x}_{1} \ldots \mathrm{Q}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}} \phi\left(\mathrm{x}_{1}, \ldots \mathrm{x}_{\mathrm{n}}\right) \mid \Psi=\right.$ True, Q_{i} in $\{\exists, \forall\}$, boolean formula $\left.\phi\right\}$
$\Psi=\forall X_{1}, \exists X_{2}, \forall X_{3} \ldots \exists X_{n} \phi\left(X_{1}, \ldots x_{n}\right) \in$ TQBF iff

$$
\Pi_{\mathrm{b} _1 \in\{0,1\}} \Sigma_{\mathrm{b} _2 \in\{0,1\}} \Pi_{\mathrm{b} _3 \in\{0,1\}} \ldots \Sigma_{\mathrm{b} _\mathrm{n} \in\{0,1\}} \mathrm{P}_{\phi}\left(\mathrm{b}_{1}, \ldots \mathrm{~b}_{\mathrm{n}}\right)=1
$$

Where P_{ϕ} is the polynomial as defined before over F_{2}

Sumcheck Protocol?

Sumcheck Protocol?

- How do we modify the sumcheck protocol for TQBF?

Sumcheck Protocol?

- How do we modify the sumcheck protocol for TQBF?

Obs 1: Add over ョ

Sumcheck Protocol?

- How do we modify the sumcheck protocol for TQBF?

Obs 1: Add over \exists

As for 3SAT, when we need a univariate polynomial over a variable quantified by G , we must check the additivity, i.e, $\mathrm{s}(0)+\mathrm{s}(1)=\mathrm{K}$

Sumcheck Protocol?

- How do we modify the sumcheck protocol for TQBF?

Obs 1: Add over \exists

As for 3SAT, when we need a univariate polynomial over a variable quantified by J , we must check the additivity, i.e, $\mathrm{s}(0)+\mathrm{s}(1)=\mathrm{K}$

Obs 2: Multiply over \forall

Sumcheck Protocol?

- How do we modify the sumcheck protocol for TQBF?

Obs 1: Add over ョ

As for 3SAT, when we need a univariate polynomial over a variable quantified by J , we must check the additivity, i.e, $s(0)+s(1)=K$

Obs 2: Multiply over \forall
When we have a univariate polynomial over a variable quantified by \forall, we must check multiplicity, i.e, $s(0) \cdot s(1)=K$

Sumcheck Protocol?

- Unlike adding polynomials, multiplying polynomials increase the degree
- If we define $h\left(X_{1}\right)$ as defined previously:

$$
\mathrm{h}\left(\mathrm{X}_{1}\right)=\Sigma_{\mathrm{b} _2 \in\{0,1\}} \Pi_{\mathrm{b} _3=\{0,1\}} \ldots \Sigma_{\mathrm{b}_{\mathrm{b}} \mathrm{n} \in\{0,1\}} \mathrm{P}_{\phi}\left(\mathrm{X}_{1}, \ldots \mathrm{~b}_{\mathrm{n}}\right)
$$

This can have degree at most 2^{n}. Which cannot be sent from the prover to the verifier.

Obs:

$$
x^{k}=x \text { in } F_{2} \text { for any } k>0
$$

Linearization

Obs:

$$
x^{k}=x \text { in } F_{2} \text { for any } k>0
$$

Linearization

Obs:

$$
x^{k}=x \text { in } F_{2} \text { for any } k>0
$$

Any polynomial $p\left(X_{1}, \ldots X_{n}\right)$ can be converted to a multilinear polynomial $q\left(X_{1}, \ldots X_{n}\right)$ where

1. The degree of any variable in any term of q is at most 1
2. $p\left(a_{1}, \ldots a_{n}\right)=q\left(a_{1}, \ldots a_{n}\right)$ for any $a_{1} \ldots a_{n} \in\{0,1\}$

Linearization

Definition: Linearization operator L

$L_{i}(p)=X_{i} \cdot p\left(X_{1}, \ldots, X_{i-1}, 1, X_{i+1}, \ldots X_{n}\right)+\left(1-X_{i}\right) \cdot p\left(X_{1}, \ldots, X_{i-1}, 0, X_{i+1}, \ldots X_{n}\right)$

Defines a new polynomial such that

1. Degree of X_{i} in $L_{i}(p)$ is at most 1
2. $L_{i}(p)$ gives the same values as p for all binary inputs

Obs: $\left.q=L_{1}\left(L_{2}\left(\ldots L_{n}(p) \ldots\right)\right)\right)$

Linearization

Definition: \forall operator for polynomials

$$
\forall_{i} p\left(X_{1}, \ldots X_{n}\right)=p\left(X_{1}, \ldots, X_{i-1}, 0, X_{i+1}, \ldots X_{n}\right) \cdot p\left(X_{1}, \ldots, X_{i-1}, 1, X_{i+1}, \ldots X_{n}\right)
$$

Definition: ョ operator for polynomials

$$
\exists_{i} p\left(X_{1}, \ldots X_{n}\right)=p\left(X_{1}, \ldots, X_{i-1}, 0, X_{i+1}, \ldots X_{n}\right)+p\left(X_{1}, \ldots, X_{i-1}, 1, X_{i+1}, \ldots X_{n}\right)
$$

Linearization

Linearization

Original polynomial:

Linearization

Original polynomial:

$$
\Pi_{\mathrm{b}_{-} 1 \in\{0,1\}} \Sigma_{\mathrm{b} _2 \in\{0,1\}} \Pi_{\mathrm{b} _3 \in\{0,1\}} \ldots \Sigma_{\mathrm{b} _\mathrm{n} \in\{0,1\}} \mathrm{P}_{\phi}\left(\mathrm{b}_{1}, \ldots \mathrm{~b}_{\mathrm{n}}\right)=1
$$

Linearization

Original polynomial:

$$
\Pi_{\mathrm{b}_{-} 1 \in\{0,1\}} \Sigma_{\mathrm{b} _2 \in\{0,1\}} \Pi_{\mathrm{b} _3 \in\{0,1\}} \ldots \Sigma_{\mathrm{b} _\mathrm{n} \in\{0,1\}} \mathrm{P}_{\phi}\left(\mathrm{b}_{1}, \ldots \mathrm{~b}_{\mathrm{n}}\right)=1
$$

Can be equivalently rewritten as

Linearization

Original polynomial:

$$
\Pi_{\mathrm{b}_{-} 1 \in\{0,1\}} \Sigma_{\mathrm{b} _2 \in\{0,1\}} \Pi_{\mathrm{b} _3 \in\{0,1\}} \ldots \Sigma_{\mathrm{b} _\mathrm{n} \in\{0,1\}} \mathrm{P}_{\phi}\left(\mathrm{b}_{1}, \ldots \mathrm{~b}_{\mathrm{n}}\right)=1
$$

Can be equivalently rewritten as

$$
\forall_{1} \exists_{2} \forall_{3} \ldots \exists_{n} P_{\phi}\left(X_{1}, \ldots X_{n}\right)=1
$$

Linearization

Original polynomial:

$$
\Pi_{\mathrm{b}_{-} 1 \in\{0,1\}} \Sigma_{\mathrm{b}_{2} 2 \in\{0,1\}} \Pi_{\mathrm{b}_{2} 3 \in\{0,1\}} \ldots \Sigma_{\mathrm{b}_{\mathrm{b}} \mathrm{n} \in\{0,1\}} \mathrm{P}_{\phi}\left(\mathrm{b}_{1}, \ldots \mathrm{~b}_{\mathrm{n}}\right)=1
$$

Can be equivalently rewritten as

$$
\forall_{1} \exists_{2} \forall_{3} \ldots \exists_{n} P_{\phi}\left(X_{1}, \ldots X_{n}\right)=1
$$

Since we only care about using $\{0,1\}$ to $P_{\phi}\left(X_{1}, \ldots X_{n}\right)$, we do not lose semantics by adding linearization operators in between,

Linearization

Original polynomial:

$$
\Pi_{\mathrm{b}_{-} 1 \in\{0,1\}} \Sigma_{\mathrm{b}_{2} 2 \in\{0,1\}} \Pi_{\mathrm{b} _3 \in\{0,1\}} \ldots . \Sigma_{\mathrm{b}_{2} \mathrm{n} \in\{0,1\}} \mathrm{P}_{\phi}\left(\mathrm{b}_{1}, \ldots \mathrm{~b}_{\mathrm{n}}\right)=1
$$

Can be equivalently rewritten as

$$
\forall_{1} \exists_{2} \forall_{3} \ldots \exists_{n} P_{\phi}\left(X_{1}, \ldots X_{n}\right)=1
$$

Since we only care about using $\{0,1\}$ to $P_{\phi}\left(X_{1}, \ldots X_{n}\right)$, we do not lose semantics by adding linearization operators in between,

$$
\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} P_{\phi}\left(X_{1}, \ldots X_{n}\right)=1
$$

Linearization

Original polynomial:

$$
\Pi_{\mathrm{b}_{-} 1 \in\{0,1\}} \Sigma_{\mathrm{b}_{-} 2 \in\{0,1\}} \Pi_{\mathrm{b} _3 \in\{0,1\}} \ldots \Sigma_{\mathrm{b}_{2} \mathrm{n} \in\{0,1\}} \mathrm{P}_{\phi}\left(\mathrm{b}_{1}, \ldots \mathrm{~b}_{\mathrm{n}}\right)=1
$$

Can be equivalently rewritten as

$$
\forall_{1} \exists_{2} \forall_{3} \ldots \exists_{n} P_{\phi}\left(X_{1}, \ldots X_{n}\right)=1
$$

Since we only care about using $\{0,1\}$ to $P_{\phi}\left(X_{1}, \ldots X_{n}\right)$, we do not lose semantics by adding linearization operators in between,

$$
\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} P_{\phi}\left(X_{1}, \ldots X_{n}\right)=1
$$

The size of this expression is increased due to the addition of the linearization operator. The size will then be $\mathrm{O}\left(\mathrm{n}+1+2+\ldots+\mathrm{n}+\left|\mathrm{P}_{\phi}\right|\right)$, which is still poly-size

Modified Sumcheck protocol

Modified Sumcheck protocol

Consider a polynomial $g\left(X_{1}, \ldots X_{n}\right)$, we need to check whether

Modified Sumcheck protocol

Consider a polynomial $g\left(X_{1}, \ldots X_{n}\right)$, we need to check whether

$$
\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)=1
$$

Modified Sumcheck protocol

Consider a polynomial $g\left(X_{1}, \ldots X_{n}\right)$, we need to check whether

$$
\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)=1
$$

Input: $R_{1} R_{2} \ldots R_{t} g\left(X_{1}, \ldots X_{n}\right)$ where R represents one of the 3 operators, t is poly(n) and a claim C .

Modified Sumcheck protocol

Consider a polynomial $g\left(X_{1}, \ldots X_{n}\right)$, we need to check whether

$$
\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)=1
$$

Input: $R_{1} R_{2} \ldots R_{t} g\left(X_{1}, \ldots X_{n}\right)$ where R represents one of the 3 operators, t is poly(n) and a claim C .

TQBF: g would be P_{ϕ}, t would be $o\left(n^{3}\right)$, and C would be 1

Modified Sumcheck protocol

V: provide a polynomial equal to $R_{2} \ldots R_{t} g\left(X_{1}, \ldots X_{n}\right)$
P: returns a polynomial $s\left(X_{1}\right)$
$\mathrm{V}: 1$) If $R_{1}=\exists_{1}$ verify that $s(0)+s(1)=C$
2) If $R_{1}=\forall_{1}$ verify that $s(0) \cdot s(1)=C$
3) If $R_{1}=L_{1}$ and verify that $a \cdot s(1)+(1-a) \cdot s(0)=s(a)$

If all checks pass, pick a random element a, recursively prove that the polynomial $R_{2} \ldots R_{t} g\left(a, \ldots X_{n}\right)=s(a)$

Modified Sumcheck protocol
$\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)$

Modified Sumcheck protocol

$\forall_{1} \mathrm{~L}_{1} \exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{n} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{n} g\left(X_{1}, \ldots \mathrm{X}_{\mathrm{n}}\right)$

Modified Sumcheck protocol
$\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)$

Modified Sumcheck protocol
$\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)$

Modified Sumcheck protocol

$\forall_{1} \mathrm{~L}_{1} \exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{n} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{n} g\left(X_{1}, \ldots \mathrm{X}_{\mathrm{n}}\right)$
$\mathrm{s}_{1}(0) \cdot \mathrm{s}_{1}(1)==\mathrm{C}$

Modified Sumcheck protocol

$\forall_{1} \mathrm{~L}_{1} \exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{n} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{n} g\left(X_{1}, \ldots \mathrm{X}_{\mathrm{n}}\right)$
$\mathrm{s}_{1}(0) \cdot \mathrm{s}_{1}(1)=\mathrm{C}$

$$
L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, X_{2}, \ldots X_{n}\right)
$$

Modified Sumcheck protocol

$\forall_{1} \mathrm{~L}_{1} \exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{n} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{n} g\left(X_{1}, \ldots \mathrm{X}_{\mathrm{n}}\right)$
$\mathrm{s}_{1}(0) \cdot \mathrm{s}_{1}(1)=\mathrm{C}$

$$
L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, X_{2}, \ldots X_{n}\right)
$$

Modified Sumcheck protocol

$\forall_{1} \mathrm{~L}_{1} \exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{n} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{n} g\left(X_{1}, \ldots \mathrm{X}_{\mathrm{n}}\right)$
$\mathrm{s}_{1}(0) \cdot \mathrm{S}_{1}(1)==\mathrm{C}$

$$
L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, X_{2}, \ldots X_{n}\right)
$$

Modified Sumcheck protocol

$\forall_{1} \mathrm{~L}_{1} \exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{n} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{n} g\left(X_{1}, \ldots \mathrm{X}_{\mathrm{n}}\right)$
$\mathrm{S}_{1}(0) \cdot \mathrm{S}_{1}(1)==\mathrm{C}$

$$
L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, X_{2}, \ldots X_{n}\right)
$$

Modified Sumcheck protocol

$\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)$
$\mathrm{S}_{1}(0) \cdot \mathrm{S}_{1}(1)==\mathrm{C}$

$$
\mathrm{L}_{1} \exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{n} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{\mathrm{n}} \mathrm{~g}\left(\mathrm{a}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)
$$

$$
\left(1-a_{1}\right) \cdot s_{2}(0)+a_{1} \cdot s_{2}(1)==s_{2}\left(a_{1}\right)
$$

Modified Sumcheck protocol

$\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)$
$\mathrm{S}_{1}(0) \cdot \mathrm{S}_{1}(1)==\mathrm{C}$

$$
L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, X_{2}, \ldots X_{n}\right)
$$

$$
\left(1-a_{1}\right) \cdot s_{2}(0)+a_{1} \cdot s_{2}(1)==s_{2}\left(a_{1}\right)
$$

$$
\exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, a_{2}, \ldots X_{n}\right)
$$

Modified Sumcheck protocol

$\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)$
$\mathrm{s}_{1}(0) \cdot \mathrm{s}_{1}(1)=\mathrm{C}$

$$
L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, X_{2}, \ldots X_{n}\right)
$$

$$
\left(1-a_{1}\right) \cdot s_{2}(0)+a_{1} \cdot s_{2}(1)==s_{2}\left(a_{1}\right)
$$

$$
\exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, a_{2}, \ldots X_{n}\right)
$$

Modified Sumcheck protocol

$\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)$
$\mathrm{S}_{1}(0) \cdot \mathrm{S}_{1}(1)==\mathrm{C}$

$$
L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, X_{2}, \ldots X_{n}\right)
$$

$$
\left(1-a_{1}\right) \cdot s_{2}(0)+a_{1} \cdot s_{2}(1)==s_{2}\left(a_{1}\right)
$$

$$
\exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{\mathrm{n}} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{\mathrm{n}} \mathrm{~g}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)
$$

Modified Sumcheck protocol

```
* }\mp@subsup{L}{1}{}\mp@subsup{L}{1}{}\mp@subsup{\exists}{2}{}\mp@subsup{L}{1}{}\mp@subsup{L}{2}{},\mp@subsup{\forall}{3}{}\ldots\mp@subsup{\exists}{n}{}\mp@subsup{\textrm{L}}{1}{}\mp@subsup{L}{2}{2}\ldots\mp@subsup{L}{n}{}g(\mp@subsup{X}{1}{},\ldots.\mp@subsup{X}{n}{}
```

$$
\mathrm{s}_{1}(0) \cdot \mathrm{s}_{1}(1)=\mathrm{C}
$$

$$
\mathrm{L}_{1} \exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{\mathrm{n}} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{\mathrm{n}} \mathrm{~g}\left(\mathrm{a}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)
$$

$$
\left(1-a_{1}\right) \cdot s_{2}(0)+a_{1} \cdot s_{2}(1)==s_{2}\left(a_{1}\right)
$$

$$
\exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, a_{2}, \ldots X_{n}\right)
$$

$$
s_{3}(0)+s_{3}(1)==s_{2}\left(a_{2}\right)
$$

Modified Sumcheck protocol

$$
\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)
$$

$$
s_{1}(0) \cdot s_{1}(1)==C
$$

$$
\mathrm{L}_{1} \exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{n} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{\mathrm{n}} \mathrm{~g}\left(\mathrm{a}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)
$$

$$
\left(1-a_{1}\right) \cdot s_{2}(0)+a_{1} \cdot s_{2}(1)==s_{2}\left(a_{1}\right)
$$

$$
\exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, a_{2}, \ldots X_{n}\right)
$$

$$
s_{3}(0)+s_{3}(1)==s_{2}\left(a_{2}\right)
$$

$$
L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, a_{2}, a_{3}, \ldots X_{n}\right)
$$

Modified Sumcheck protocol

$$
\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)
$$

$$
s_{1}(0) \cdot s_{1}(1)==C
$$

$$
\mathrm{L}_{1} \exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{n} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{\mathrm{n}} \mathrm{~g}\left(\mathrm{a}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)
$$

$$
\left(1-a_{1}\right) \cdot s_{2}(0)+a_{1} \cdot s_{2}(1)==s_{2}\left(a_{1}\right)
$$

$$
\exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, a_{2}, \ldots X_{n}\right)
$$

$$
s_{3}(0)+s_{3}(1)==s_{2}\left(a_{2}\right)
$$

$$
L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, a_{2}, a_{3}, \ldots X_{n}\right)
$$

Modified Sumcheck protocol

$$
\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)
$$

$$
\mathrm{s}_{1}(0) \cdot \mathrm{s}_{1}(1)=\mathrm{C}
$$

$$
\mathrm{L}_{1} \exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{n} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{\mathrm{n}} \mathrm{~g}\left(\mathrm{a}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)
$$

$$
\left(1-a_{1}\right) \cdot s_{2}(0)+a_{1} \cdot s_{2}(1)==s_{2}\left(a_{1}\right)
$$

$$
\exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{\mathrm{n}} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{\mathrm{n}} \mathrm{~g}\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)
$$

$$
\mathrm{s}_{3}(0)+\mathrm{s}_{3}(1)==\mathrm{s}_{2}\left(\mathrm{a}_{2}\right)
$$

$$
L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, a_{2}, a_{3}, \ldots X_{n}\right)
$$

Modified Sumcheck protocol

$$
\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)
$$

$$
\mathrm{s}_{1}(0) \cdot \mathrm{s}_{1}(1)=\mathrm{C}
$$

$$
\mathrm{L}_{1} \exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{n} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{\mathrm{n}} \mathrm{~g}\left(\mathrm{a}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)
$$

$$
\left(1-a_{1}\right) \cdot s_{2}(0)+a_{1} \cdot s_{2}(1)==s_{2}\left(a_{1}\right)
$$

$$
\exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, a_{2}, \ldots X_{n}\right)
$$

$$
\mathrm{s}_{3}(0)+\mathrm{s}_{3}(1)==\mathrm{s}_{2}\left(\mathrm{a}_{2}\right)
$$

$$
L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, a_{2}, a_{3}, \ldots X_{n}\right)
$$

Modified Sumcheck protocol

$$
\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)
$$

$$
\mathrm{s}_{1}(0) \cdot \mathrm{s}_{1}(1)=\mathrm{C}
$$

$$
\mathrm{L}_{1} \exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{n} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{\mathrm{n}} \mathrm{~g}\left(\mathrm{a}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)
$$

$$
\left(1-a_{1}\right) \cdot s_{2}(0)+a_{1} \cdot s_{2}(1)==s_{2}\left(a_{1}\right)
$$

$$
\exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, a_{2}, \ldots X_{n}\right)
$$

$$
s_{3}(0)+s_{3}(1)==s_{2}\left(a_{2}\right)
$$

$$
L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, a_{2}, a_{3}, \ldots X_{n}\right)
$$

$$
\left(1-a_{n-1}\right) \cdot s_{t}(0)+a_{n-1} \cdot s_{t}(1)==s_{t}\left(a_{n-1}\right)
$$

Modified Sumcheck protocol

$$
\forall_{1} L_{1} \exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(X_{1}, \ldots X_{n}\right)
$$

$$
\mathrm{s}_{1}(0) \cdot \mathrm{s}_{1}(1)=\mathrm{C}
$$

$$
\mathrm{L}_{1} \exists_{2} \mathrm{~L}_{1} \mathrm{~L}_{2} \forall_{3} \ldots \exists_{n} \mathrm{~L}_{1} \mathrm{~L}_{2} \ldots \mathrm{~L}_{\mathrm{n}} \mathrm{~g}\left(\mathrm{a}_{1}, \mathrm{X}_{2}, \ldots \mathrm{X}_{\mathrm{n}}\right)
$$

$$
\left(1-a_{1}\right) \cdot s_{2}(0)+a_{1} \cdot s_{2}(1)==s_{2}\left(a_{1}\right)
$$

$$
\exists_{2} L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, a_{2}, \ldots X_{n}\right)
$$

$$
\mathrm{s}_{3}(0)+\mathrm{s}_{3}(1)==\mathrm{s}_{2}\left(\mathrm{a}_{2}\right)
$$

$$
L_{1} L_{2} \forall_{3} \ldots \exists_{n} L_{1} L_{2} \ldots L_{n} g\left(a_{1}, a_{2}, a_{3}, \ldots X_{n}\right)
$$

$$
\begin{aligned}
&\left(1-a_{n-1}\right) \cdot s_{t}(0)+ a_{n-1} \cdot s_{t}(1)== \\
& s_{t}\left(a_{n-1}\right) \\
& g\left(a_{1}, a_{2}, \ldots a_{n}\right)==s_{t}\left(a_{n}\right)
\end{aligned}
$$

Where's IP?

MIP

MIP

- We don't need to restrict ourselves to one prover. If we could interact with multiple provers, we would get the class MIP[BGK '88]

MIP

- We don't need to restrict ourselves to one prover. If we could interact with multiple provers, we would get the class MIP[BGK '88]
- Note: Provers cannot talk to each other, they communicate only to the verifier on the transcript which everyone can see.

MIP

- We don't need to restrict ourselves to one prover. If we could interact with multiple provers, we would get the class MIP[BGK '88]
- Note: Provers cannot talk to each other, they communicate only to the verifier on the transcript which everyone can see.
- What power does each prover give? More Provers => More Power?

MIP

- We don't need to restrict ourselves to one prover. If we could interact with multiple provers, we would get the class MIP[BGK '88]
- Note: Provers cannot talk to each other, they communicate only to the verifier on the transcript which everyone can see.
- What power does each prover give? More Provers => More Power?

No.

MIP

- We don't need to restrict ourselves to one prover. If we could interact with multiple provers, we would get the class MIP[BGK '88]
- Note: Provers cannot talk to each other, they communicate only to the verifier on the transcript which everyone can see.
- What power does each prover give? More Provers => More Power?

No.

- Theorem[BFL '91]: MIP = MIP[2] = NEXPTIME

QIP, MIP*

QIP, MIP*

- Replacing the BPP verifier with a BQP verifier in IP gives QIP[Wat '99]

QIP, MIP*

- Replacing the BPP verifier with a BQP verifier in IP gives QIP[Wat '99]
- Theorem [JJUW '09]: QIP = PSPACE

QIP, MIP*

- Replacing the BPP verifier with a BQP verifier in IP gives QIP[Wat '99]
- Theorem [JJUW '09]: QIP = PSPACE
- What if we allowed provers to converse in MIP? Suppose, through arbitrary length quantum entangled qubits. We would get the class MIP*[CHT '04]

QIP, MIP*

- Replacing the BPP verifier with a BQP verifier in IP gives QIP[Wat '99]
- Theorem [JJUW '09]: QIP = PSPACE
- What if we allowed provers to converse in MIP? Suppose, through arbitrary length quantum entangled qubits. We would get the class MIP*[CHT ‘04]
- Theorem[JNVWY '20]: MIP* = RE

QIP, MIP*

- Replacing the BPP verifier with a BQP verifier in IP gives QIP[Wat ‘99]
- Theorem [JJUW '09]: QIP = PSPACE
- What if we allowed provers to converse in MIP? Suppose, through arbitrary length quantum entangled qubits. We would get the class MIP*[CHT ‘04]
- Theorem[JNVWY '20]: MIP* = RE
- We would be able to solve undecidable problems like the halting problem

IP = PSPACE Timeline

1985: AM, MA defined by Babai
1986: Goldwasser and Sipser show public coin private coin equivalence 1988: AM=AM[2] by BM, MIP is defined by BGKW 1989: IP is defined by GMR 1991: ZKP(NONISO in IP) by GMW, MIP=NEXP by BFL

1992: \#3SAT in IP by LFKN, IP=PSPACE by Shamir, Simpler proof by Shen

References

[GMR ‘89] S. Goldwasser, S. Micali, and C. Rackoff. 1989. The knowledge complexity of interactive proof systems. SIAM J. Comput. 18, 1 (Feb. 1989), 186-208. https://doi.org/10.1137/0218012
[GMW '91] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1991. Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM 38, 3 (July 1991), 690-728. https://doi.org/10.1145/116825.116852
[Babai '85] L Babai. 1985. Trading group theory for randomness. In Proceedings of the seventeenth annual ACM symposium on Theory of computing (STOC '85). Association for Computing Machinery, New York, NY, USA, 421-429. https://doi.org/10.1145/22145.22192
[GS '86] S Goldwasser and M Sipser. 1986. Private coins versus public coins in interactive proof systems. In Proceedings of the eighteenth annual ACM symposium on Theory of computing (STOC '86). Association for Computing Machinery, New York, NY, USA, 59-68. https://doi.org/10.1145/12130.12137
[BM ‘88] László Babai and Shlomo Moran. 1988. Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity class. J. Comput. Syst. Sci. 36, 2 (April 1988), 254-276.
https://doi.org/10.1016/0022-0000(88)90028-1

References

[LFKN '92] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. 1992. Algebraic methods for interactive proof systems. J. ACM 39, 4 (Oct. 1992), 859-868. https://doi.org/10.1145/146585.146605
[Shamir ‘92] Adi Shamir. 1992. IP = PSPACE. J. ACM 39, 4 (Oct. 1992), 869-877. \underline{h} ttps://doi.org/10.1145/146585.146609
[Shen '92] A. Shen. 1992. IP = SPACE: simplified proof. J. ACM 39, 4 (Oct. 1992), 878-880. https://doi.org/10.1145/146585.146613
[BGKW ‘88] Michael Ben-Or, Shafi Goldwasser, Joe Kilian, and Avi Wigderson. 1988. Multi-prover interactive proofs: how to remove intractability assumptions. In Proceedings of the twentieth annual ACM symposium on Theory of computing (STOC '88). Association for Computing Machinery, New York, NY, USA, 113-131. https://doi.org/10.1145/62212.62223
[BFL '91] Babai, L., Fortnow, L. \& Lund, C. Non-deterministic exponential time has two-prover interactive protocols. Comput Complexity 1, 3-40 (1991). https://doi.org/10.1007/BF01200056

References

[Wat '99] J. Watrous. PSPACE has constant-round quantum interactive proof systems, Proceedings of IEEE FOCS'99, pp. 112-119, 1999. arXiv:cs.CC/9901015
[JJUW '09] R. Jain, Z. Ji, S. Upadhyay, and J. Watrous. QIP = PSPACE, J. ACM 58(6):1-27, 2011. doi:10.1145/2049697.2049704 arXiv:0907.4737.
[CHT ‘04] Cleve, R., Hoyer, P., Toner, B., \& Watrous, J. (2004). Consequences and Limits of Nonlocal Strategies. arXiv. https://doi.org/10.48550/arXiv.quant-ph/0404076
[JNVWY '20] Ji, Z., Natarajan, A., Vidick, T., Wright, J., \& Yuen, H. (2020). MIP*=RE. arXiv. https://doi.org/10.48550/arXiv.2001.04383

Additional References

- Introduction to the Theory of Computation, by Michael Sipser
- Computational Complexity: A Modern Approach, by Sanjeev Arora and Boaz Barak. https://theory.cs.princeton.edu/complexity/book.pdf

TL; DR

- Randomness+Interaction is the key, alone they are "weak"
- Supreme power is useless unless succinct
- Mapping to polynomials is a very powerful technique

